File size: 2,013 Bytes
37b1ed5 7574700 37b1ed5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- f1
base_model: google/vit-base-patch16-224-in21k
model-index:
- name: iiif_manuscript_vit
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# iiif_manuscript_vit
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5684
- F1: 0.5996
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
- label_smoothing_factor: 0.1
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.5639 | 1.0 | 2269 | 0.5822 | 0.5516 |
| 0.5834 | 2.0 | 4538 | 0.5825 | 0.5346 |
| 0.5778 | 3.0 | 6807 | 0.5794 | 0.6034 |
| 0.5735 | 4.0 | 9076 | 0.5742 | 0.5713 |
| 0.5731 | 5.0 | 11345 | 0.5745 | 0.6008 |
| 0.5701 | 6.0 | 13614 | 0.5729 | 0.5499 |
| 0.5696 | 7.0 | 15883 | 0.5717 | 0.5952 |
| 0.5683 | 8.0 | 18152 | 0.5680 | 0.6005 |
| 0.5648 | 9.0 | 20421 | 0.5679 | 0.5967 |
| 0.564 | 10.0 | 22690 | 0.5684 | 0.5996 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
|