Edit model card

donut_experiment_bayesian_trial_18

This model is a fine-tuned version of naver-clova-ix/donut-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5643
  • Bleu: 0.0698
  • Precisions: [0.8340248962655602, 0.7741176470588236, 0.7309782608695652, 0.6784565916398714]
  • Brevity Penalty: 0.0928
  • Length Ratio: 0.2961
  • Translation Length: 482
  • Reference Length: 1628
  • Cer: 0.7496
  • Wer: 0.8244

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.7803961202565393e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 2
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Precisions Brevity Penalty Length Ratio Translation Length Reference Length Cer Wer
0.0287 1.0 253 0.5097 0.0722 [0.8374485596707819, 0.7762237762237763, 0.7338709677419355, 0.6888888888888889] 0.0954 0.2985 486 1628 0.7506 0.8208
0.0159 2.0 506 0.5583 0.0697 [0.8319502074688797, 0.7741176470588236, 0.7282608695652174, 0.6784565916398714] 0.0928 0.2961 482 1628 0.7496 0.8232
0.0118 3.0 759 0.5643 0.0698 [0.8340248962655602, 0.7741176470588236, 0.7309782608695652, 0.6784565916398714] 0.0928 0.2961 482 1628 0.7496 0.8244

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.1.0
  • Datasets 2.18.0
  • Tokenizers 0.19.1
Downloads last month
7
Safetensors
Model size
202M params
Tensor type
I64
·
F32
·
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.

Model tree for davelotito/donut_experiment_bayesian_trial_18

Finetuned
(369)
this model