ppo-LunarLander-v3 / config.json
davera-017's picture
Upload PPO LunarLander-v2 trained agent
2655b8c
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f93710df5b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f93710df640>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f93710df6d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f93710df760>", "_build": "<function ActorCriticPolicy._build at 0x7f93710df7f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f93710df880>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f93710df910>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f93710df9a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f93710dfa30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f93710dfac0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f93710dfb50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f93710dfbe0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f937a5fb600>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694634782051269127, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFoInD17lpe6pvYTOMCIBTNRpKO6kiMrtwAAgD8AAIA/AIAAuvZsabq7qJY3PP5mMoJB3roNQa22AACAPwAAgD/GUz0+sItGP11JfTxLdXS+M4C5PXaEcTwAAAAAAAAAABrmIz22UIQ+TCnDPLy/l76a3bA97SH9vAAAAAAAAAAAmjk/PRQ2ibooyny6PLAEtnwVKDsa3Y85AACAPwAAgD9m/KC8FGiQuoA71jqeeHO1RZiJuTVY+LkAAIA/AACAP02ZEz0fDZ+5IawsON5maDKTj1q640VLtwAAgD8AAIA/MwsIva5piboDyXk5zaxpNHUQnLrGU5G4AACAPwAAgD9mYKG9o6BFPy+2uzxLsYW++MpkvYDXjb0AAAAAAAAAAADSVjz2zDy6qkHfuvPWjLX8DDu51b0AOgAAgD8AAIA/mrEGvsar9z4NxwE+SfqLvq+AmbwyaaE7AAAAAAAAAADNTiS+HI5UvFCdNruqk7G5s1G4PdrPijoAAIA/AACAP2aBqb2eGJg/9ljSvCt7mb4I7v+9iiUIvQAAAAAAAAAATVgDvUhzj7orE9U4IuGzM0grFrnyk/G3AACAPwAAgD8zsw+7jy5IuiY7IjgJ4swyZ96BunazPLcAAIA/AACAP/MqqT3JyB89DV0nvjV/i74VbWg9uKPyPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwDGv0jC53C+MAWyUTQMBjAF0lEdAkY8OUILPU3V9lChoBkdAZQ9gxagVXWgHTegDaAhHQJGPdqEeyRl1fZQoaAZHQFvDVe8f3exoB03oA2gIR0CRkB3Mpw0gdX2UKGgGR0BivtafSQYDaAdN6ANoCEdAkZBAaJhvznV9lChoBkdAUFgcinpB5WgHS/loCEdAkZSD4tYjjnV9lChoBkdAZr80/nnuA2gHTegDaAhHQJGYa5c1O0t1fZQoaAZHQGJfeotL+P1oB03oA2gIR0CRmSyrxRVIdX2UKGgGR0Bk7riqABkqaAdN6ANoCEdAkZm5SJj2BnV9lChoBkdAK5fx2B8QZmgHS/9oCEdAkayVMVUMonV9lChoBkdAYOw3hGYrrmgHTegDaAhHQJGuoJswco91fZQoaAZHQGTNOu7pV0doB03oA2gIR0CRrtBSDRMOdX2UKGgGR0BnIXxaxHG0aAdN6ANoCEdAka+sQI2OyXV9lChoBkdAW892X9itrGgHTegDaAhHQJG2A4n4O+Z1fZQoaAZHQGLWyBK+SKZoB03oA2gIR0CRxo9ECvHMdX2UKGgGR0Bj2N3Qla8paAdN6ANoCEdAkcuG8mKIi3V9lChoBkdAZK5SiudPL2gHTegDaAhHQJHSrOVxCIF1fZQoaAZHQGNUzqSowVVoB03oA2gIR0CR2BkUbkwOdX2UKGgGR0Bg0+qtHQQdaAdN6ANoCEdAkd1x8hLXc3V9lChoBkdAXTx9srNGE2gHTegDaAhHQJHeRg+hXbN1fZQoaAZHQGDW8fV7QcBoB03oA2gIR0CR3mKHO8kEdX2UKGgGR0BmSW9+PRzBaAdN6ANoCEdAkeKJzYEns3V9lChoBkdAYTOwRGtp22gHTegDaAhHQJHmrmcOLBN1fZQoaAZHQGO4fK6nR9hoB03oA2gIR0CR589roGILdX2UKGgGR0Ble3kvK2a2aAdN6ANoCEdAkeiHIU8FIXV9lChoBkdAPcLngYP5HmgHS/BoCEdAkeuKtxMnJHV9lChoBkdAY3Y7Dl5nlGgHTegDaAhHQJHrw7muDBd1fZQoaAZHQGQ/ClabF0hoB03oA2gIR0CSAEsVclgMdX2UKGgGR0BgH8hkiD/VaAdN6ANoCEdAkgCTCgsbvXV9lChoBkdAZ9d2Cdz4lGgHTegDaAhHQJIB2LYPGyZ1fZQoaAZHQD5lyuIRAbBoB00AAWgIR0CSA433pOerdX2UKGgGR0BnOQtFrl/6aAdN6ANoCEdAkgnsZUDMeXV9lChoBkdAQtQDA8B+4WgHS/BoCEdAkg87wrlNlHV9lChoBkdAXqBRvWH1vmgHTegDaAhHQJIWg7EHdGl1fZQoaAZHQFxh2c8TzupoB03oA2gIR0CSGfvr4WUKdX2UKGgGR0BN9tDc/MW5aAdNJQFoCEdAkhvWS2Yv4HV9lChoBkdAVrnxG2Cul2gHTegDaAhHQJIgXWhAWzp1fZQoaAZHQFcNc0tRNypoB03oA2gIR0CSJlN3W4EwdX2UKGgGR0BjbkrI5o4/aAdN6ANoCEdAkixVrZamoHV9lChoBkdAZM6u8scyWWgHTegDaAhHQJItNDF6zE91fZQoaAZHQF7BUI9kjHJoB03oA2gIR0CSOTfgaWHDdX2UKGgGR0Bhgui5/b0waAdN6ANoCEdAkjqP8l5WzXV9lChoBkdAY8gD9Oymh2gHTegDaAhHQJI7loexOcl1fZQoaAZHQGReAvDgqExoB03oA2gIR0CSQLLDAJswdX2UKGgGR0BYIEE1VHWjaAdN6ANoCEdAkkEQr1/UfHV9lChoBkdAMOs0xdpqRGgHTRIBaAhHQJJDbjn3cpN1fZQoaAZHQFuj6WgOBlNoB03oA2gIR0CSVgFotcv/dX2UKGgGR0BikI+OfdylaAdN6ANoCEdAklcyNOuaF3V9lChoBkdAYfU+UyHmBGgHTegDaAhHQJJYosBhhH91fZQoaAZHQEVw87IT4+NoB00XAWgIR0CSXmrQgLZ0dX2UKGgGR0BkIprpJPIoaAdN6ANoCEdAkmMAZsKsuHV9lChoBkdAYs9bM5fdAWgHTegDaAhHQJJqC7Ciypt1fZQoaAZHQGTvFDv3JxNoB03oA2gIR0CSbZP2wmmcdX2UKGgGR0BitrWwu/UOaAdN6ANoCEdAkm90cn3L3nV9lChoBkdAYTHXjENvwWgHTegDaAhHQJJ1Tj+717J1fZQoaAZHQGB1HskY4yZoB03oA2gIR0CSfWouf29MdX2UKGgGR0BGwZCv5gw5aAdL72gIR0CSgW/W1+iKdX2UKGgGR0BehEngHeJpaAdN6ANoCEdAkoVL8Jlar3V9lChoBkdAXOjEZR8+imgHTegDaAhHQJKPulrM1TB1fZQoaAZHQGCfkkSmIj5oB03oA2gIR0CSkVkbxVhkdX2UKGgGR0BlQ+CVbA1vaAdN6ANoCEdAkpTGNedCmnV9lChoBkdAY/eAGSpzcWgHTegDaAhHQJKVBYp2ECh1fZQoaAZHQGLGK/20zCVoB03oA2gIR0CSlqdBBzFNdX2UKGgGR0BipotthuwYaAdN6ANoCEdAkpdpXEIgNnV9lChoBkdAZYwjzqbBoGgHTegDaAhHQJKoaFPBSDR1fZQoaAZHQF3ISM98qnZoB03oA2gIR0CSqbt3wCr+dX2UKGgGR0BgqhtelbeNaAdN6ANoCEdAkrAMwYcebXV9lChoBkdARg6oMrmQsGgHTQIBaAhHQJKzcm6XjVB1fZQoaAZHQGWlAk1Mue1oB03oA2gIR0CStcloUSIydX2UKGgGR0BEcgG8mKIjaAdNAQFoCEdAkrhm1YyO73V9lChoBkdAUXEHTqjaf2gHTSUBaAhHQJK5aoJiRW91fZQoaAZHQGBp5iVjZthoB03oA2gIR0CSvkX0oSctdX2UKGgGR0BjHNYMfA9FaAdN6ANoCEdAksQ1yNn5BXV9lChoBkdAY/cyZ8a4t2gHTegDaAhHQJLIPHDJlrd1fZQoaAZHQGVHxWDHwPRoB03oA2gIR0CSzW2ovSMMdX2UKGgGR0BaiMTviLl4aAdN6ANoCEdAktAWjKxLTXV9lChoBkdAYgIgqVhTfmgHTegDaAhHQJLSr/CIk7h1fZQoaAZHQGF+0Vi4J/poB03oA2gIR0CS3To4dZJTdX2UKGgGR0BfJMkleF+NaAdN6ANoCEdAkt7l4xDb8HV9lChoBkdAZwZ5aePJaWgHTegDaAhHQJLibZ5AyEd1fZQoaAZHQGQLax5cC5poB03oA2gIR0CS5BcBltj1dX2UKGgGR0Blc7zd1uBMaAdN6ANoCEdAkvz5CF9KEnV9lChoBkdAZDj9hJAdGWgHTegDaAhHQJMERoexOcl1fZQoaAZHQF72D1XeWOZoB03oA2gIR0CTBzU+cH4XdX2UKGgGR0BmI3AsTWXkaAdN6ANoCEdAkwkvcafjCHV9lChoBkdAYSluMuOCG2gHTegDaAhHQJMLPWAf+0h1fZQoaAZHQFwZDziCJ41oB03oA2gIR0CTDA8SwnpjdX2UKGgGR0A5d8tf5ULlaAdNDgFoCEdAkw2btzCDVnV9lChoBkdAW+JVR1oxpWgHTegDaAhHQJMPvaL4vex1fZQoaAZHQFvjZHd43WFoB03oA2gIR0CTFF0mMOwxdX2UKGgGR0BhhrkbPyCnaAdN6ANoCEdAkxiPuLJjlXV9lChoBkdAcC2nrY5DJGgHTXoBaAhHQJMdRrSE12t1fZQoaAZHQGGf8cENe+poB03oA2gIR0CTHjzTWoWIdX2UKGgGR0Bll81/DtPYaAdN6ANoCEdAkyDr52yLRHV9lChoBkdAZggXzDn/1mgHTegDaAhHQJMjiW8h9st1fZQoaAZHQAs8Nx2jfvZoB00NAWgIR0CTMIOj7ALzdX2UKGgGR0BiSP6Mzdk8aAdN6ANoCEdAkzGNyLhrFnV9lChoBkdAYvuZBsyi22gHTegDaAhHQJMz+Jyhi9Z1fZQoaAZHQGTsd2gWac9oB03oA2gIR0CTOULGaQV9dX2UKGgGR0ByXBRm9QGfaAdN3QJoCEdAkzrOtW+49XV9lChoBkdAZNip2ECeVmgHTegDaAhHQJM7ig+Qlrx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}