davidschulte
commited on
Commit
•
292c43d
1
Parent(s):
2253d13
Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,9 +1,146 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
2 |
tags:
|
3 |
-
-
|
4 |
-
-
|
5 |
---
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
base_model: bert-base-multilingual-uncased
|
3 |
+
datasets:
|
4 |
+
- nguha/legalbench
|
5 |
+
license: apache-2.0
|
6 |
tags:
|
7 |
+
- embedding_space_map
|
8 |
+
- BaseLM:bert-base-multilingual-uncased
|
9 |
---
|
10 |
|
11 |
+
# ESM nguha/legalbench
|
12 |
+
|
13 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
## Model Details
|
18 |
+
|
19 |
+
### Model Description
|
20 |
+
|
21 |
+
<!-- Provide a longer summary of what this model is. -->
|
22 |
+
|
23 |
+
ESM
|
24 |
+
|
25 |
+
- **Developed by:** David Schulte
|
26 |
+
- **Model type:** ESM
|
27 |
+
- **Base Model:** bert-base-multilingual-uncased
|
28 |
+
- **Intermediate Task:** nguha/legalbench
|
29 |
+
- **ESM architecture:** linear
|
30 |
+
- **Language(s) (NLP):** [More Information Needed]
|
31 |
+
- **License:** Apache-2.0 license
|
32 |
+
|
33 |
+
## Training Details
|
34 |
+
|
35 |
+
### Intermediate Task
|
36 |
+
- **Task ID:** nguha/legalbench
|
37 |
+
- **Subset [optional]:** supply_chain_disclosure_best_practice_training
|
38 |
+
- **Text Column:** text
|
39 |
+
- **Label Column:** answer
|
40 |
+
- **Dataset Split:** train
|
41 |
+
- **Sample size [optional]:** 8
|
42 |
+
- **Sample seed [optional]:**
|
43 |
+
|
44 |
+
### Training Procedure [optional]
|
45 |
+
|
46 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
47 |
+
|
48 |
+
#### Language Model Training Hyperparameters [optional]
|
49 |
+
- **Epochs:** 3
|
50 |
+
- **Batch size:** 32
|
51 |
+
- **Learning rate:** 2e-05
|
52 |
+
- **Weight Decay:** 0.01
|
53 |
+
- **Optimizer**: AdamW
|
54 |
+
|
55 |
+
### ESM Training Hyperparameters [optional]
|
56 |
+
- **Epochs:** 10
|
57 |
+
- **Batch size:** 32
|
58 |
+
- **Learning rate:** 0.001
|
59 |
+
- **Weight Decay:** 0.01
|
60 |
+
- **Optimizer**: AdamW
|
61 |
+
|
62 |
+
|
63 |
+
### Additional trainiung details [optional]
|
64 |
+
|
65 |
+
|
66 |
+
## Model evaluation
|
67 |
+
|
68 |
+
### Evaluation of fine-tuned language model [optional]
|
69 |
+
|
70 |
+
|
71 |
+
### Evaluation of ESM [optional]
|
72 |
+
MSE:
|
73 |
+
|
74 |
+
### Additional evaluation details [optional]
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
## What are Embedding Space Maps?
|
79 |
+
|
80 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
81 |
+
Embedding Space Maps (ESMs) are neural networks that approximate the effect of fine-tuning a language model on a task. They can be used to quickly transform embeddings from a base model to approximate how a fine-tuned model would embed the the input text.
|
82 |
+
ESMs can be used for intermediate task selection with the ESM-LogME workflow.
|
83 |
+
|
84 |
+
## How can I use Embedding Space Maps for Intermediate Task Selection?
|
85 |
+
[![PyPI version](https://img.shields.io/pypi/v/hf-dataset-selector.svg)](https://pypi.org/project/hf-dataset-selector)
|
86 |
+
|
87 |
+
We release **hf-dataset-selector**, a Python package for intermediate task selection using Embedding Space Maps.
|
88 |
+
|
89 |
+
**hf-dataset-selector** fetches ESMs for a given language model and uses it to find the best dataset for applying intermediate training to the target task. ESMs are found by their tags on the Huggingface Hub.
|
90 |
+
|
91 |
+
```python
|
92 |
+
from hfselect import Dataset, compute_task_ranking
|
93 |
+
|
94 |
+
# Load target dataset from the Hugging Face Hub
|
95 |
+
dataset = Dataset.from_hugging_face(
|
96 |
+
name="stanfordnlp/imdb",
|
97 |
+
split="train",
|
98 |
+
text_col="text",
|
99 |
+
label_col="label",
|
100 |
+
is_regression=False,
|
101 |
+
num_examples=1000,
|
102 |
+
seed=42
|
103 |
+
)
|
104 |
+
|
105 |
+
# Fetch ESMs and rank tasks
|
106 |
+
task_ranking = compute_task_ranking(
|
107 |
+
dataset=dataset,
|
108 |
+
model_name="bert-base-multilingual-uncased"
|
109 |
+
)
|
110 |
+
|
111 |
+
# Display top 5 recommendations
|
112 |
+
print(task_ranking[:5])
|
113 |
+
```
|
114 |
+
|
115 |
+
For more information on how to use ESMs please have a look at the [official Github repository](https://github.com/davidschulte/hf-dataset-selector).
|
116 |
+
|
117 |
+
## Citation
|
118 |
+
|
119 |
+
|
120 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
121 |
+
If you are using this Embedding Space Maps, please cite our [paper](https://arxiv.org/abs/2410.15148).
|
122 |
+
|
123 |
+
**BibTeX:**
|
124 |
+
|
125 |
+
|
126 |
+
```
|
127 |
+
@misc{schulte2024moreparameterefficientselectionintermediate,
|
128 |
+
title={Less is More: Parameter-Efficient Selection of Intermediate Tasks for Transfer Learning},
|
129 |
+
author={David Schulte and Felix Hamborg and Alan Akbik},
|
130 |
+
year={2024},
|
131 |
+
eprint={2410.15148},
|
132 |
+
archivePrefix={arXiv},
|
133 |
+
primaryClass={cs.CL},
|
134 |
+
url={https://arxiv.org/abs/2410.15148},
|
135 |
+
}
|
136 |
+
```
|
137 |
+
|
138 |
+
|
139 |
+
**APA:**
|
140 |
+
|
141 |
+
```
|
142 |
+
Schulte, D., Hamborg, F., & Akbik, A. (2024). Less is More: Parameter-Efficient Selection of Intermediate Tasks for Transfer Learning. arXiv preprint arXiv:2410.15148.
|
143 |
+
```
|
144 |
+
|
145 |
+
## Additional Information
|
146 |
+
|