File size: 5,025 Bytes
ef7bae2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import math

import torch


class PositionalEncoding(torch.nn.Module):
    """
    https://pytorch.org/tutorials/beginner/transformer_tutorial.html
    """

    def __init__(self, d_model: int, max_len: int = 512):
        super().__init__()

        position = torch.arange(max_len).unsqueeze(1)
        div_term = torch.exp(
            torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)
        )

        pe = torch.zeros(max_len, d_model)
        pe[:, : d_model // 2] = torch.sin(position * div_term)
        pe[:, d_model // 2 :] = torch.cos(position * div_term)

        self.register_buffer("pe", pe)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = x + self.pe[: x.size(0)]
        return x


class MultiheadSelfAttention(torch.nn.Module):
    def __init__(self, embed_dim: int, num_heads: int = 8):
        super().__init__()

        self.embed_dim = embed_dim
        self.num_heads = num_heads

        self.query = torch.nn.Linear(
            in_features=embed_dim,
            out_features=embed_dim,
        )
        self.key = torch.nn.Linear(
            in_features=embed_dim,
            out_features=embed_dim,
        )
        self.value = torch.nn.Linear(
            in_features=embed_dim,
            out_features=embed_dim,
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        q = self.query(x).view(x.shape[0], self.num_heads, -1).transpose(0, 1)
        k = self.key(x).view(x.shape[0], self.num_heads, -1).permute(1, 2, 0)
        v = self.value(x).view(x.shape[0], self.num_heads, -1).transpose(0, 1)
        qk = torch.softmax(
            torch.matmul(q, k) / (self.embed_dim / self.num_heads) ** 0.5,
            dim=-1,
        )
        qkv = torch.matmul(qk, v).transpose(0, 1).reshape(x.shape[0], -1)
        return qkv


class Block(torch.nn.Module):
    def __init__(self, d_model: int, num_heads: int = 8, eps: float = 1e-6):
        super().__init__()

        self.ln1 = torch.nn.LayerNorm(normalized_shape=d_model, eps=eps)
        self.attn = MultiheadSelfAttention(embed_dim=d_model, num_heads=num_heads)
        self.ln2 = torch.nn.LayerNorm(normalized_shape=d_model, eps=eps)
        self.linear1 = torch.nn.Linear(in_features=d_model, out_features=d_model * 4)
        self.linear2 = torch.nn.Linear(in_features=d_model * 4, out_features=d_model)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        ln1 = self.ln1(x)
        attn = self.attn(ln1)
        ln2 = self.ln2(x + attn)
        mlp = self.linear2(torch.relu(self.linear1(ln2)))
        return mlp + x + attn


class Head(torch.nn.Module):
    def __init__(
        self,
        d_model: int,
        eps: float = 1e-6,
    ):
        super().__init__()

        self.d_model = d_model
        self.eps = eps

        self.ln = torch.nn.LayerNorm(normalized_shape=d_model, eps=eps)
        self.linear1 = torch.nn.Linear(in_features=d_model, out_features=d_model)
        self.linear2 = torch.nn.Linear(in_features=d_model, out_features=d_model)
        self.tanh_layer = torch.nn.Linear(in_features=d_model * 2, out_features=d_model)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        ln = self.ln(x)
        mlp = torch.exp(self.linear2(torch.nn.functional.elu(self.linear1(ln))))
        res = torch.cat(
            [
                ln.sum(dim=0) / ln.shape[0],
                (mlp * ln).sum(dim=0) / mlp.sum(dim=0),
            ]
        )
        res = torch.tanh(self.tanh_layer(res))
        res /= (res**2).sum() ** 0.5
        res /= (res**2).sum() ** 0.5
        return res


class MUSE(torch.nn.Module):
    def __init__(
        self,
        num_embeddings: int,
        embedding_dim: int,
        d_model: int,
        num_heads: int,
        eps: float = 1e-6,
    ):
        super().__init__()

        self.num_embeddings = num_embeddings
        self.embedding_dim = embedding_dim
        self.d_model = d_model
        self.num_heads = num_heads
        self.eps = eps

        self.embedding = torch.nn.Embedding(
            num_embeddings=num_embeddings,
            embedding_dim=embedding_dim,
        )
        self.linear = torch.nn.Linear(
            in_features=embedding_dim,
            out_features=d_model,
        )
        self.pe = PositionalEncoding(
            d_model=d_model,
            max_len=512,  # TODO: remove hardcode
        )
        self.block0 = Block(d_model=d_model)
        self.block1 = Block(d_model=d_model)
        self.block2 = Block(d_model=d_model)
        self.block3 = Block(d_model=d_model)
        self.block4 = Block(d_model=d_model)
        self.block5 = Block(d_model=d_model)
        self.head = Head(d_model=d_model)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.embedding(x)
        x = self.linear(x)
        x = self.pe(x)
        x = self.block0(x)
        x = self.block1(x)
        x = self.block2(x)
        x = self.block3(x)
        x = self.block4(x)
        x = self.block5(x)
        x = self.head(x)
        return x