--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - generated metrics: - precision - recall - f1 - accuracy base_model: microsoft/layoutlmv3-base model-index: - name: layoutlmv3-finetuned-invoice results: - task: type: token-classification name: Token Classification dataset: name: generated type: generated config: sroie split: train args: sroie metrics: - type: precision value: 0.9959514170040485 name: Precision - type: recall value: 0.9979716024340771 name: Recall - type: f1 value: 0.9969604863221885 name: F1 - type: accuracy value: 0.9995786812723826 name: Accuracy --- # layoutlmv3-finetuned-invoice This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the generated dataset. It achieves the following results on the evaluation set: - Loss: 0.0028 - Precision: 0.9960 - Recall: 0.9980 - F1: 0.9970 - Accuracy: 0.9996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 2.0 | 100 | 0.0502 | 0.97 | 0.9838 | 0.9768 | 0.9968 | | No log | 4.0 | 200 | 0.0194 | 0.972 | 0.9858 | 0.9789 | 0.9971 | | No log | 6.0 | 300 | 0.0160 | 0.972 | 0.9858 | 0.9789 | 0.9971 | | No log | 8.0 | 400 | 0.0123 | 0.972 | 0.9858 | 0.9789 | 0.9971 | | 0.053 | 10.0 | 500 | 0.0089 | 0.9757 | 0.9757 | 0.9757 | 0.9966 | | 0.053 | 12.0 | 600 | 0.0058 | 0.9959 | 0.9919 | 0.9939 | 0.9992 | | 0.053 | 14.0 | 700 | 0.0046 | 0.9939 | 0.9919 | 0.9929 | 0.9989 | | 0.053 | 16.0 | 800 | 0.0037 | 0.9960 | 0.9980 | 0.9970 | 0.9996 | | 0.053 | 18.0 | 900 | 0.0068 | 0.9959 | 0.9878 | 0.9919 | 0.9987 | | 0.0057 | 20.0 | 1000 | 0.0054 | 0.9919 | 0.9959 | 0.9939 | 0.9992 | | 0.0057 | 22.0 | 1100 | 0.0057 | 0.9919 | 0.9959 | 0.9939 | 0.9992 | | 0.0057 | 24.0 | 1200 | 0.0049 | 0.9919 | 0.9959 | 0.9939 | 0.9992 | | 0.0057 | 26.0 | 1300 | 0.0052 | 0.9919 | 0.9959 | 0.9939 | 0.9992 | | 0.0057 | 28.0 | 1400 | 0.0030 | 0.9960 | 0.9980 | 0.9970 | 0.9996 | | 0.0022 | 30.0 | 1500 | 0.0028 | 0.9960 | 0.9980 | 0.9970 | 0.9996 | | 0.0022 | 32.0 | 1600 | 0.0030 | 0.9960 | 0.9980 | 0.9970 | 0.9996 | | 0.0022 | 34.0 | 1700 | 0.0030 | 0.9960 | 0.9980 | 0.9970 | 0.9996 | | 0.0022 | 36.0 | 1800 | 0.0037 | 0.9960 | 0.9980 | 0.9970 | 0.9996 | | 0.0022 | 38.0 | 1900 | 0.0037 | 0.9960 | 0.9980 | 0.9970 | 0.9996 | | 0.0017 | 40.0 | 2000 | 0.0037 | 0.9960 | 0.9980 | 0.9970 | 0.9996 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1