File size: 2,073 Bytes
47a1f13
068012e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47a1f13
068012e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- billsum
metrics:
- rouge
model-index:
- name: t5_billsum
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: billsum
      type: billsum
      config: default
      split: ca_test
      args: default
    metrics:
    - name: Rouge1
      type: rouge
      value: 0.1399
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5_billsum

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4902
- Rouge1: 0.1399
- Rouge2: 0.0492
- Rougel: 0.1163
- Rougelsum: 0.1161
- Gen Len: 19.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log        | 1.0   | 62   | 2.7895          | 0.13   | 0.0368 | 0.1083 | 0.1082    | 19.0    |
| No log        | 2.0   | 124  | 2.5723          | 0.134  | 0.0448 | 0.1117 | 0.1114    | 19.0    |
| No log        | 3.0   | 186  | 2.5074          | 0.1418 | 0.0505 | 0.1171 | 0.1171    | 19.0    |
| No log        | 4.0   | 248  | 2.4902          | 0.1399 | 0.0492 | 0.1163 | 0.1161    | 19.0    |


### Framework versions

- Transformers 4.30.1
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.13.3