Update README.md
Browse files
README.md
CHANGED
@@ -5,27 +5,28 @@ tags:
|
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- transformers
|
|
|
8 |
---
|
9 |
|
10 |
# ddobokki/klue-roberta-small-nli-sts
|
11 |
|
12 |
-
|
13 |
|
14 |
<!--- Describe your model here -->
|
15 |
|
16 |
## Usage (Sentence-Transformers)
|
17 |
|
18 |
-
|
19 |
|
20 |
```
|
21 |
pip install -U sentence-transformers
|
22 |
```
|
23 |
|
24 |
-
|
25 |
|
26 |
```python
|
27 |
from sentence_transformers import SentenceTransformer
|
28 |
-
sentences = ["
|
29 |
|
30 |
model = SentenceTransformer('ddobokki/klue-roberta-small-nli-sts')
|
31 |
embeddings = model.encode(sentences)
|
@@ -35,7 +36,7 @@ print(embeddings)
|
|
35 |
|
36 |
|
37 |
## Usage (HuggingFace Transformers)
|
38 |
-
|
39 |
|
40 |
```python
|
41 |
from transformers import AutoTokenizer, AutoModel
|
@@ -50,7 +51,7 @@ def mean_pooling(model_output, attention_mask):
|
|
50 |
|
51 |
|
52 |
# Sentences we want sentence embeddings for
|
53 |
-
sentences = [
|
54 |
|
55 |
# Load model from HuggingFace Hub
|
56 |
tokenizer = AutoTokenizer.from_pretrained('ddobokki/klue-roberta-small-nli-sts')
|
@@ -70,49 +71,12 @@ print("Sentence embeddings:")
|
|
70 |
print(sentence_embeddings)
|
71 |
```
|
72 |
|
|
|
|
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
<!--- Describe how your model was evaluated -->
|
78 |
-
|
79 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=ddobokki/klue-roberta-small-nli-sts)
|
80 |
-
|
81 |
-
|
82 |
-
## Training
|
83 |
-
The model was trained with the parameters:
|
84 |
-
|
85 |
-
**DataLoader**:
|
86 |
-
|
87 |
-
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 18078 with parameters:
|
88 |
-
```
|
89 |
-
{'batch_size': 32}
|
90 |
-
```
|
91 |
-
|
92 |
-
**Loss**:
|
93 |
-
|
94 |
-
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
|
95 |
-
```
|
96 |
-
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
|
97 |
-
```
|
98 |
-
|
99 |
-
Parameters of the fit()-Method:
|
100 |
-
```
|
101 |
-
{
|
102 |
-
"epochs": 1,
|
103 |
-
"evaluation_steps": 1807,
|
104 |
-
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
105 |
-
"max_grad_norm": 1,
|
106 |
-
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
|
107 |
-
"optimizer_params": {
|
108 |
-
"lr": 2e-05
|
109 |
-
},
|
110 |
-
"scheduler": "WarmupLinear",
|
111 |
-
"steps_per_epoch": null,
|
112 |
-
"warmup_steps": 1808,
|
113 |
-
"weight_decay": 0.01
|
114 |
-
}
|
115 |
-
```
|
116 |
|
117 |
|
118 |
## Full Model Architecture
|
|
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- transformers
|
8 |
+
- ko
|
9 |
---
|
10 |
|
11 |
# ddobokki/klue-roberta-small-nli-sts
|
12 |
|
13 |
+
한국어 Sentence Transformer 모델입니다.
|
14 |
|
15 |
<!--- Describe your model here -->
|
16 |
|
17 |
## Usage (Sentence-Transformers)
|
18 |
|
19 |
+
[sentence-transformers](https://www.SBERT.net) 라이브러리를 이용해 사용할 수 있습니다.
|
20 |
|
21 |
```
|
22 |
pip install -U sentence-transformers
|
23 |
```
|
24 |
|
25 |
+
사용법
|
26 |
|
27 |
```python
|
28 |
from sentence_transformers import SentenceTransformer
|
29 |
+
sentences = ["흐르는 강물을 거꾸로 거슬러 오르는", "세월이 가면 가슴이 터질 듯한"]
|
30 |
|
31 |
model = SentenceTransformer('ddobokki/klue-roberta-small-nli-sts')
|
32 |
embeddings = model.encode(sentences)
|
|
|
36 |
|
37 |
|
38 |
## Usage (HuggingFace Transformers)
|
39 |
+
transformers 라이브러리만 사용할 경우
|
40 |
|
41 |
```python
|
42 |
from transformers import AutoTokenizer, AutoModel
|
|
|
51 |
|
52 |
|
53 |
# Sentences we want sentence embeddings for
|
54 |
+
sentences = ["흐르는 강물을 거꾸로 거슬러 오르는", "세월이 가면 가슴이 터질 듯한"]
|
55 |
|
56 |
# Load model from HuggingFace Hub
|
57 |
tokenizer = AutoTokenizer.from_pretrained('ddobokki/klue-roberta-small-nli-sts')
|
|
|
71 |
print(sentence_embeddings)
|
72 |
```
|
73 |
|
74 |
+
## Performance
|
75 |
+
- Semantic Textual Similarity test set results <br>
|
76 |
|
77 |
+
| Model | Cosine Pearson | Cosine Spearman | Euclidean Pearson | Euclidean Spearman | Manhattan Pearson | Manhattan Spearman | Dot Pearson | Dot Spearman |
|
78 |
+
|------------------------|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|
|
79 |
+
| KoSRoBERTa<sup>small</sup> | 84.27 | 84.17 | 83.33 | 83.65 | 83.34 | 83.65 | 82.10 | 81.38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
|
82 |
## Full Model Architecture
|