debbiesoon commited on
Commit
1008c46
1 Parent(s): 49fd887

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - multi_news
7
+ model-index:
8
+ - name: summarise_v4
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # summarise_v4
16
+
17
+ This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the multi_news dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 2.5264
20
+ - Rouge2 Precision: 0.1349
21
+ - Rouge2 Recall: 0.1187
22
+ - Rouge2 Fmeasure: 0.1227
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 5e-05
42
+ - train_batch_size: 2
43
+ - eval_batch_size: 2
44
+ - seed: 42
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - num_epochs: 1
48
+ - mixed_precision_training: Native AMP
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
53
+ |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:|
54
+ | 2.9616 | 0.08 | 10 | 2.8008 | 0.0552 | 0.1944 | 0.0844 |
55
+ | 2.7112 | 0.16 | 20 | 2.7017 | 0.1099 | 0.1212 | 0.1078 |
56
+ | 2.6842 | 0.24 | 30 | 2.6653 | 0.119 | 0.1252 | 0.1157 |
57
+ | 2.4638 | 0.32 | 40 | 2.6306 | 0.1386 | 0.1153 | 0.1222 |
58
+ | 2.646 | 0.4 | 50 | 2.6099 | 0.1449 | 0.1095 | 0.122 |
59
+ | 2.5128 | 0.48 | 60 | 2.5945 | 0.1259 | 0.1484 | 0.1313 |
60
+ | 2.6737 | 0.56 | 70 | 2.5832 | 0.1192 | 0.1252 | 0.118 |
61
+ | 2.614 | 0.64 | 80 | 2.5616 | 0.1288 | 0.1179 | 0.1193 |
62
+ | 2.4643 | 0.72 | 90 | 2.5612 | 0.1371 | 0.1227 | 0.124 |
63
+ | 2.3164 | 0.8 | 100 | 2.5606 | 0.1372 | 0.1177 | 0.1223 |
64
+ | 2.4514 | 0.88 | 110 | 2.5339 | 0.1412 | 0.1276 | 0.128 |
65
+ | 2.8113 | 0.96 | 120 | 2.5264 | 0.1349 | 0.1187 | 0.1227 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.21.3
71
+ - Pytorch 1.12.1+cu113
72
+ - Datasets 2.6.2.dev0
73
+ - Tokenizers 0.12.1