debbiesoon commited on
Commit
6a142f8
1 Parent(s): eb7204f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -4
README.md CHANGED
@@ -12,7 +12,12 @@ should probably proofread and complete it, then remove this comment. -->
12
 
13
  # summarise_v7
14
 
15
- This model is a fine-tuned version of [debbiesoon/summarise](https://huggingface.co/debbiesoon/summarise) on an unknown dataset.
 
 
 
 
 
16
 
17
  ## Model description
18
 
@@ -32,12 +37,23 @@ More information needed
32
 
33
  The following hyperparameters were used during training:
34
  - learning_rate: 5e-05
35
- - train_batch_size: 8
36
- - eval_batch_size: 8
37
  - seed: 42
38
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
39
  - lr_scheduler_type: linear
40
- - num_epochs: 3.0
 
 
 
 
 
 
 
 
 
 
 
41
 
42
  ### Framework versions
43
 
 
12
 
13
  # summarise_v7
14
 
15
+ This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 1.1331
18
+ - Rouge2 Precision: 0.3023
19
+ - Rouge2 Recall: 0.3298
20
+ - Rouge2 Fmeasure: 0.2949
21
 
22
  ## Model description
23
 
 
37
 
38
  The following hyperparameters were used during training:
39
  - learning_rate: 5e-05
40
+ - train_batch_size: 2
41
+ - eval_batch_size: 2
42
  - seed: 42
43
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
  - lr_scheduler_type: linear
45
+ - num_epochs: 1
46
+ - mixed_precision_training: Native AMP
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
51
+ |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:|
52
+ | 1.3257 | 0.22 | 10 | 1.4084 | 0.1157 | 0.4297 | 0.1742 |
53
+ | 1.6076 | 0.44 | 20 | 1.2212 | 0.337 | 0.3337 | 0.3005 |
54
+ | 1.1881 | 0.67 | 30 | 1.2107 | 0.3219 | 0.3431 | 0.3095 |
55
+ | 1.6237 | 0.89 | 40 | 1.1331 | 0.3023 | 0.3298 | 0.2949 |
56
+
57
 
58
  ### Framework versions
59