End of training
Browse files- README.md +93 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: facebook/wav2vec2-base-960h
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- marsyas/gtzan
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: wav2vec2-base-960h-finetuned-gtzan
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Audio Classification
|
15 |
+
type: audio-classification
|
16 |
+
dataset:
|
17 |
+
name: GTZAN
|
18 |
+
type: marsyas/gtzan
|
19 |
+
config: all
|
20 |
+
split: train
|
21 |
+
args: all
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.73
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# wav2vec2-base-960h-finetuned-gtzan
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the GTZAN dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 1.0690
|
36 |
+
- Accuracy: 0.73
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 3e-05
|
56 |
+
- train_batch_size: 4
|
57 |
+
- eval_batch_size: 4
|
58 |
+
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 4
|
60 |
+
- total_train_batch_size: 16
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- lr_scheduler_warmup_ratio: 0.1
|
64 |
+
- num_epochs: 15
|
65 |
+
- mixed_precision_training: Native AMP
|
66 |
+
|
67 |
+
### Training results
|
68 |
+
|
69 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
70 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------:|
|
71 |
+
| 2.3011 | 0.9956 | 56 | 2.2915 | 0.1 |
|
72 |
+
| 2.2365 | 1.9911 | 112 | 2.1198 | 0.37 |
|
73 |
+
| 1.9162 | 2.9867 | 168 | 1.9024 | 0.42 |
|
74 |
+
| 1.7154 | 4.0 | 225 | 1.7397 | 0.39 |
|
75 |
+
| 1.757 | 4.9956 | 281 | 1.5732 | 0.47 |
|
76 |
+
| 1.546 | 5.9911 | 337 | 1.5172 | 0.47 |
|
77 |
+
| 1.5738 | 6.9867 | 393 | 1.3950 | 0.54 |
|
78 |
+
| 1.2893 | 8.0 | 450 | 1.4202 | 0.56 |
|
79 |
+
| 1.2745 | 8.9956 | 506 | 1.2819 | 0.59 |
|
80 |
+
| 1.2632 | 9.9911 | 562 | 1.2788 | 0.66 |
|
81 |
+
| 1.2195 | 10.9867 | 618 | 1.1909 | 0.63 |
|
82 |
+
| 1.1151 | 12.0 | 675 | 1.1605 | 0.62 |
|
83 |
+
| 1.0165 | 12.9956 | 731 | 1.1202 | 0.67 |
|
84 |
+
| 0.9418 | 13.9911 | 787 | 1.0747 | 0.73 |
|
85 |
+
| 0.9686 | 14.9333 | 840 | 1.0690 | 0.73 |
|
86 |
+
|
87 |
+
|
88 |
+
### Framework versions
|
89 |
+
|
90 |
+
- Transformers 4.43.2
|
91 |
+
- Pytorch 2.4.0+cu121
|
92 |
+
- Datasets 2.20.0
|
93 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 378310592
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74e9f44cba526bba79d8bf6f50f346f3f062b608980ca1d32caee841e7084980
|
3 |
size 378310592
|