--- language: - ar license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - ymoslem/MediaSpeech - UBC-NLP/Casablanca - mozilla-foundation/common_voice_17_0 - google/fleurs metrics: - wer model-index: - name: Whisper Medium ar results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: ymoslem/MediaSpeech config: ar split: test args: ar metrics: - name: Wer type: wer value: 15.325045470739346 --- # Whisper Medium ar This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 2.4504 - Wer: 15.3250 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2423 | 0.2 | 1000 | 2.0205 | 21.3178 | | 0.0667 | 0.4 | 2000 | 2.3750 | 18.2033 | | 0.047 | 0.6 | 3000 | 2.4276 | 17.5658 | | 0.0249 | 0.8 | 4000 | 2.7231 | 16.1576 | | 0.017 | 1.0 | 5000 | 2.4504 | 15.3250 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1 ## Citation ```bibtex @misc{deepdml/whisper-medium-ar-mix-norm, title={Fine-tuned Whisper medium ASR model for speech recognition in Arabic}, author={Jimenez, David}, howpublished={\url{https://huggingface.co/deepdml/whisper-medium-ar-mix-norm}}, year={2025} } ```