File size: 3,241 Bytes
cc85cae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6a03d5
 
 
 
 
 
 
 
 
 
 
 
cc85cae
c6a03d5
cc85cae
 
c6a03d5
 
 
cc85cae
c6a03d5
cc85cae
 
c6a03d5
cc85cae
c6a03d5
 
 
 
 
 
 
 
cc85cae
 
c6a03d5
cc85cae
 
c6a03d5
 
 
 
 
 
cc85cae
c6a03d5
cc85cae
 
 
c6a03d5
 
cc85cae
 
 
 
 
 
 
 
 
 
c6a03d5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import os
import json
from argparse import ArgumentParser
from glob import glob
from tqdm import tqdm

import torch
from safetensors.torch import load_file, save_file

from kernel import weight_dequant

def main(fp8_path, bf16_path):
    torch.set_default_dtype(torch.bfloat16)
    os.makedirs(bf16_path, exist_ok=True)
    model_index_file = os.path.join(fp8_path, "model.safetensors.index.json")
    with open(model_index_file, "r") as f:
        model_index = json.load(f)
    weight_map = model_index["weight_map"]
    
    # Cache for loaded safetensor files
    loaded_files = {}
    fp8_weight_names = []

    # Helper function to get tensor from the correct file
    def get_tensor(tensor_name):
        file_name = weight_map[tensor_name]
        if file_name not in loaded_files:
            file_path = os.path.join(fp8_path, file_name)
            loaded_files[file_name] = load_file(file_path, device="cuda")
        return loaded_files[file_name][tensor_name]

    safetensor_files = list(glob(os.path.join(fp8_path, "*.safetensors")))
    safetensor_files.sort()
    for safetensor_file in tqdm(safetensor_files):
        file_name = os.path.basename(safetensor_file)
        current_state_dict = load_file(safetensor_file, device="cuda")
        loaded_files[file_name] = current_state_dict
        
        new_state_dict = {}
        for weight_name, weight in current_state_dict.items():
            if weight_name.endswith("_scale_inv"):
                continue
            elif weight.element_size() == 1:  # FP8 weight
                scale_inv_name = f"{weight_name}_scale_inv"
                try:
                    # Get scale_inv from the correct file
                    scale_inv = get_tensor(scale_inv_name)
                    fp8_weight_names.append(weight_name)
                    new_state_dict[weight_name] = weight_dequant(weight, scale_inv)
                except KeyError:
                    print(f"Warning: Missing scale_inv tensor for {weight_name}, skipping conversion")
                    new_state_dict[weight_name] = weight
            else:
                new_state_dict[weight_name] = weight
                
        new_safetensor_file = os.path.join(bf16_path, file_name)
        save_file(new_state_dict, new_safetensor_file)
        
        # Memory management: keep only the 2 most recently used files
        if len(loaded_files) > 2:
            oldest_file = next(iter(loaded_files))
            del loaded_files[oldest_file]
            torch.cuda.empty_cache()
    
    # Update model index
    new_model_index_file = os.path.join(bf16_path, "model.safetensors.index.json")
    for weight_name in fp8_weight_names:
        scale_inv_name = f"{weight_name}_scale_inv"
        if scale_inv_name in weight_map:
            weight_map.pop(scale_inv_name)
    with open(new_model_index_file, "w") as f:
        json.dump({"metadata": {}, "weight_map": weight_map}, f, indent=2)
        

if __name__ == "__main__":
    parser = ArgumentParser()
    parser.add_argument("--input-fp8-hf-path", type=str, required=True)
    parser.add_argument("--output-bf16-hf-path", type=str, required=True)
    args = parser.parse_args()
    main(args.input_fp8_hf_path, args.output_bf16_hf_path)