julianrisch commited on
Commit
ff971b7
1 Parent(s): 40530bc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +34 -19
README.md CHANGED
@@ -139,9 +139,9 @@ model-index:
139
  value: 85.307
140
  name: F1
141
  ---
142
- # deberta-v3-large for QA
143
 
144
- This is the [deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering.
145
 
146
 
147
  ## Overview
@@ -150,7 +150,7 @@ This is the [deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large
150
  **Downstream-task:** Extractive QA
151
  **Training data:** SQuAD 2.0
152
  **Eval data:** SQuAD 2.0
153
- **Code:** See [an example QA pipeline on Haystack](https://haystack.deepset.ai/tutorials/first-qa-system)
154
  **Infrastructure**: 1x NVIDIA A10G
155
 
156
  ## Hyperparameters
@@ -171,12 +171,27 @@ max_query_length=64
171
  ## Usage
172
 
173
  ### In Haystack
174
- Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in [Haystack](https://github.com/deepset-ai/haystack/):
 
175
  ```python
176
- reader = FARMReader(model_name_or_path="deepset/deberta-v3-large-squad2")
177
- # or
178
- reader = TransformersReader(model_name_or_path="deepset/deberta-v3-large-squad2",tokenizer="deepset/deberta-v3-large-squad2")
 
 
 
 
 
 
 
 
 
 
 
 
 
179
  ```
 
180
 
181
  ### In Transformers
182
  ```python
@@ -214,29 +229,29 @@ Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://works
214
  ```
215
 
216
  ## About us
 
217
  <div class="grid lg:grid-cols-2 gap-x-4 gap-y-3">
218
  <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
219
- <img alt="" src="https://huggingface.co/spaces/deepset/README/resolve/main/haystack-logo-colored.svg" class="w-40"/>
220
  </div>
221
- <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
222
- <img alt="" src="https://huggingface.co/spaces/deepset/README/resolve/main/deepset-logo-colored.svg" class="w-40"/>
223
  </div>
224
  </div>
225
 
226
- [deepset](http://deepset.ai/) is the company behind the open-source NLP framework [Haystack](https://haystack.deepset.ai/) which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.
227
-
228
 
229
  Some of our other work:
230
- - [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")]([https://huggingface.co/deepset/tinyroberta-squad2)
231
- - [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
232
- - [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad)
233
 
234
  ## Get in touch and join the Haystack community
235
 
236
- <p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://haystack.deepset.ai">Documentation</a></strong>.
237
 
238
- We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community/join">Discord community open to everyone!</a></strong></p>
239
 
240
- [Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai)
241
 
242
- By the way: [we're hiring!](http://www.deepset.ai/jobs)
 
139
  value: 85.307
140
  name: F1
141
  ---
142
+ # deberta-v3-large for Extractive QA
143
 
144
+ This is the [deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Extractive Question Answering.
145
 
146
 
147
  ## Overview
 
150
  **Downstream-task:** Extractive QA
151
  **Training data:** SQuAD 2.0
152
  **Eval data:** SQuAD 2.0
153
+ **Code:** See [an example extractive QA pipeline built with Haystack](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline)
154
  **Infrastructure**: 1x NVIDIA A10G
155
 
156
  ## Hyperparameters
 
171
  ## Usage
172
 
173
  ### In Haystack
174
+ Haystack is an AI orchestration framework to build customizable, production-ready LLM applications. You can use this model in Haystack to do extractive question answering on documents.
175
+ To load and run the model with [Haystack](https://github.com/deepset-ai/haystack/):
176
  ```python
177
+ # After running pip install haystack-ai "transformers[torch,sentencepiece]"
178
+
179
+ from haystack import Document
180
+ from haystack.components.readers import ExtractiveReader
181
+
182
+ docs = [
183
+ Document(content="Python is a popular programming language"),
184
+ Document(content="python ist eine beliebte Programmiersprache"),
185
+ ]
186
+
187
+ reader = ExtractiveReader(model="deepset/deberta-v3-large-squad2")
188
+ reader.warm_up()
189
+
190
+ question = "What is a popular programming language?"
191
+ result = reader.run(query=question, documents=docs)
192
+ # {'answers': [ExtractedAnswer(query='What is a popular programming language?', score=0.5740374326705933, data='python', document=Document(id=..., content: '...'), context=None, document_offset=ExtractedAnswer.Span(start=0, end=6),...)]}
193
  ```
194
+ For a complete example with an extractive question answering pipeline that scales over many documents, check out the [corresponding Haystack tutorial](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline).
195
 
196
  ### In Transformers
197
  ```python
 
229
  ```
230
 
231
  ## About us
232
+
233
  <div class="grid lg:grid-cols-2 gap-x-4 gap-y-3">
234
  <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
235
+ <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/>
236
  </div>
237
+ <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
238
+ <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/>
239
  </div>
240
  </div>
241
 
242
+ [deepset](http://deepset.ai/) is the company behind the production-ready open-source AI framework [Haystack](https://haystack.deepset.ai/).
 
243
 
244
  Some of our other work:
245
+ - [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")](https://huggingface.co/deepset/tinyroberta-squad2)
246
+ - [German BERT](https://deepset.ai/german-bert), [GermanQuAD and GermanDPR](https://deepset.ai/germanquad), [German embedding model](https://huggingface.co/mixedbread-ai/deepset-mxbai-embed-de-large-v1)
247
+ - [deepset Cloud](https://www.deepset.ai/deepset-cloud-product), [deepset Studio](https://www.deepset.ai/deepset-studio)
248
 
249
  ## Get in touch and join the Haystack community
250
 
251
+ <p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>.
252
 
253
+ We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p>
254
 
255
+ [Twitter](https://twitter.com/Haystack_AI) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://haystack.deepset.ai/) | [YouTube](https://www.youtube.com/@deepset_ai)
256
 
257
+ By the way: [we're hiring!](http://www.deepset.ai/jobs)