julianrisch
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -132,7 +132,7 @@ model-index:
|
|
132 |
name: F1
|
133 |
---
|
134 |
|
135 |
-
# electra-base for QA
|
136 |
|
137 |
## Overview
|
138 |
**Language model:** electra-base
|
@@ -140,7 +140,7 @@ model-index:
|
|
140 |
**Downstream-task:** Extractive QA
|
141 |
**Training data:** SQuAD 2.0
|
142 |
**Eval data:** SQuAD 2.0
|
143 |
-
**Code:** See [example
|
144 |
**Infrastructure**: 1x Tesla v100
|
145 |
|
146 |
## Hyperparameters
|
@@ -172,19 +172,43 @@ Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://works
|
|
172 |
"NoAns_total": 5945
|
173 |
```
|
174 |
|
|
|
175 |
## Usage
|
176 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
### In Transformers
|
178 |
```python
|
179 |
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
180 |
|
181 |
-
model_name = "deepset/
|
182 |
|
183 |
# a) Get predictions
|
184 |
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
185 |
QA_input = {
|
186 |
'question': 'Why is model conversion important?',
|
187 |
-
'context': 'The option to convert models between FARM and transformers gives freedom to the user and
|
188 |
}
|
189 |
res = nlp(QA_input)
|
190 |
|
@@ -193,35 +217,6 @@ model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
|
193 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
194 |
```
|
195 |
|
196 |
-
### In FARM
|
197 |
-
|
198 |
-
```python
|
199 |
-
from farm.modeling.adaptive_model import AdaptiveModel
|
200 |
-
from farm.modeling.tokenization import Tokenizer
|
201 |
-
from farm.infer import Inferencer
|
202 |
-
|
203 |
-
model_name = "deepset/electra-base-squad2"
|
204 |
-
|
205 |
-
# a) Get predictions
|
206 |
-
nlp = Inferencer.load(model_name, task_type="question_answering")
|
207 |
-
QA_input = [{"questions": ["Why is model conversion important?"],
|
208 |
-
"text": "The option to convert models between FARM and transformers gives freedom to the user and lets people easily switch between frameworks."}]
|
209 |
-
res = nlp.inference_from_dicts(dicts=QA_input)
|
210 |
-
|
211 |
-
# b) Load model & tokenizer
|
212 |
-
model = AdaptiveModel.convert_from_transformers(model_name, device="cpu", task_type="question_answering")
|
213 |
-
tokenizer = Tokenizer.load(model_name)
|
214 |
-
```
|
215 |
-
|
216 |
-
### In haystack
|
217 |
-
For doing QA at scale (i.e. many docs instead of a single paragraph), you can load the model also in [haystack](https://github.com/deepset-ai/haystack/):
|
218 |
-
```python
|
219 |
-
reader = FARMReader(model_name_or_path="deepset/electra-base-squad2")
|
220 |
-
# or
|
221 |
-
reader = TransformersReader(model="deepset/electra-base-squad2",tokenizer="deepset/electra-base-squad2")
|
222 |
-
```
|
223 |
-
|
224 |
-
|
225 |
## Authors
|
226 |
Vaishali Pal `vaishali.pal [at] deepset.ai`
|
227 |
Branden Chan: `branden.chan [at] deepset.ai`
|
@@ -230,18 +225,29 @@ Malte Pietsch: `malte.pietsch [at] deepset.ai`
|
|
230 |
Tanay Soni: `tanay.soni [at] deepset.ai`
|
231 |
|
232 |
## About us
|
233 |
-
![deepset logo](https://workablehr.s3.amazonaws.com/uploads/account/logo/476306/logo)
|
234 |
|
235 |
-
|
236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
-
|
239 |
-
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
|
240 |
-
- [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad)
|
241 |
-
- [FARM](https://github.com/deepset-ai/FARM)
|
242 |
-
- [Haystack](https://github.com/deepset-ai/haystack/)
|
243 |
|
244 |
-
|
245 |
-
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai)
|
246 |
|
247 |
-
By the way: [we're hiring!](http://www.deepset.ai/jobs)
|
|
|
132 |
name: F1
|
133 |
---
|
134 |
|
135 |
+
# electra-base for Extractive QA
|
136 |
|
137 |
## Overview
|
138 |
**Language model:** electra-base
|
|
|
140 |
**Downstream-task:** Extractive QA
|
141 |
**Training data:** SQuAD 2.0
|
142 |
**Eval data:** SQuAD 2.0
|
143 |
+
**Code:** See [an example extractive QA pipeline built with Haystack](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline)
|
144 |
**Infrastructure**: 1x Tesla v100
|
145 |
|
146 |
## Hyperparameters
|
|
|
172 |
"NoAns_total": 5945
|
173 |
```
|
174 |
|
175 |
+
|
176 |
## Usage
|
177 |
|
178 |
+
### In Haystack
|
179 |
+
Haystack is an AI orchestration framework to build customizable, production-ready LLM applications. You can use this model in Haystack to do extractive question answering on documents.
|
180 |
+
To load and run the model with [Haystack](https://github.com/deepset-ai/haystack/):
|
181 |
+
```python
|
182 |
+
# After running pip install haystack-ai "transformers[torch,sentencepiece]"
|
183 |
+
|
184 |
+
from haystack import Document
|
185 |
+
from haystack.components.readers import ExtractiveReader
|
186 |
+
|
187 |
+
docs = [
|
188 |
+
Document(content="Python is a popular programming language"),
|
189 |
+
Document(content="python ist eine beliebte Programmiersprache"),
|
190 |
+
]
|
191 |
+
|
192 |
+
reader = ExtractiveReader(model="deepset/roberta-base-squad2")
|
193 |
+
reader.warm_up()
|
194 |
+
|
195 |
+
question = "What is a popular programming language?"
|
196 |
+
result = reader.run(query=question, documents=docs)
|
197 |
+
# {'answers': [ExtractedAnswer(query='What is a popular programming language?', score=0.5740374326705933, data='python', document=Document(id=..., content: '...'), context=None, document_offset=ExtractedAnswer.Span(start=0, end=6),...)]}
|
198 |
+
```
|
199 |
+
For a complete example with an extractive question answering pipeline that scales over many documents, check out the [corresponding Haystack tutorial](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline).
|
200 |
+
|
201 |
### In Transformers
|
202 |
```python
|
203 |
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
204 |
|
205 |
+
model_name = "deepset/roberta-base-squad2"
|
206 |
|
207 |
# a) Get predictions
|
208 |
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
209 |
QA_input = {
|
210 |
'question': 'Why is model conversion important?',
|
211 |
+
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
|
212 |
}
|
213 |
res = nlp(QA_input)
|
214 |
|
|
|
217 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
218 |
```
|
219 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
## Authors
|
221 |
Vaishali Pal `vaishali.pal [at] deepset.ai`
|
222 |
Branden Chan: `branden.chan [at] deepset.ai`
|
|
|
225 |
Tanay Soni: `tanay.soni [at] deepset.ai`
|
226 |
|
227 |
## About us
|
|
|
228 |
|
229 |
+
<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3">
|
230 |
+
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
|
231 |
+
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/>
|
232 |
+
</div>
|
233 |
+
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
|
234 |
+
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/>
|
235 |
+
</div>
|
236 |
+
</div>
|
237 |
+
|
238 |
+
[deepset](http://deepset.ai/) is the company behind the production-ready open-source AI framework [Haystack](https://haystack.deepset.ai/).
|
239 |
+
|
240 |
+
Some of our other work:
|
241 |
+
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")](https://huggingface.co/deepset/tinyroberta-squad2)
|
242 |
+
- [German BERT](https://deepset.ai/german-bert), [GermanQuAD and GermanDPR](https://deepset.ai/germanquad), [German embedding model](https://huggingface.co/mixedbread-ai/deepset-mxbai-embed-de-large-v1)
|
243 |
+
- [deepset Cloud](https://www.deepset.ai/deepset-cloud-product), [deepset Studio](https://www.deepset.ai/deepset-studio)
|
244 |
+
|
245 |
+
## Get in touch and join the Haystack community
|
246 |
+
|
247 |
+
<p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>.
|
248 |
|
249 |
+
We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p>
|
|
|
|
|
|
|
|
|
250 |
|
251 |
+
[Twitter](https://twitter.com/Haystack_AI) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://haystack.deepset.ai/) | [YouTube](https://www.youtube.com/@deepset_ai)
|
|
|
252 |
|
253 |
+
By the way: [we're hiring!](http://www.deepset.ai/jobs)
|