MichelBartelsDeepset commited on
Commit
822f98c
·
1 Parent(s): 098f828

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -0
README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: Multilingual
3
+ datasets:
4
+ - deepset/germanquad
5
+ license: mit
6
+ thumbnail: https://thumb.tildacdn.com/tild3433-3637-4830-a533-353833613061/-/resize/720x/-/format/webp/germanquad.jpg
7
+ tags:
8
+ - exbert
9
+ ---
10
+
11
+ ![bert_image](https://thumb.tildacdn.com/tild3433-3637-4830-a533-353833613061/-/resize/720x/-/format/webp/germanquad.jpg)
12
+
13
+ ## Overview
14
+ **Language model:** deepset/roberta-base-squad2-distilled
15
+ **Language:** German
16
+ **Training data:** GermanQuAD train set (~ 12MB)
17
+ **Eval data:** GermanQuAD test set (~ 5MB)
18
+ **Infrastructure**: 1x V100 GPU
19
+ **Published**: Apr 21st, 2021
20
+
21
+ ## Details
22
+ - We trained a German question answering model with a gelectra-base model as its basis.
23
+ - The dataset is GermanQuAD, a new, German language dataset, which we hand-annotated and published [online](https://deepset.ai/germanquad).
24
+ - The training dataset is one-way annotated and contains 11518 questions and 11518 answers, while the test dataset is three-way annotated so that there are 2204 questions and with 2204·3−76 = 6536answers, because we removed 76 wrong answers.
25
+ - In addition to the annotations in GermanQuAD, haystack's distillation feature was used for training. deepset/roberta-large-squad2 was used as the teacher model.
26
+
27
+ See https://deepset.ai/germanquad for more details and dataset download in SQuAD format.
28
+
29
+ ## Hyperparameters
30
+ ```
31
+ batch_size = 80
32
+ n_epochs = 4
33
+ max_seq_len = 384
34
+ learning_rate = 3e-5
35
+ lr_schedule = LinearWarmup
36
+ embeds_dropout_prob = 0.1
37
+ temperature = 1.5
38
+ distillation_loss_weight = 0.75
39
+ ```
40
+ ## Performance
41
+ We evaluated the extractive question answering performance on the SQuAD v2 dev set.
42
+ Model types and training data are included in the model name.
43
+ For finetuning XLM-Roberta, we use the English SQuAD v2.0 dataset.
44
+ The GELECTRA models are warm started on the German translation of SQuAD v1.1 and finetuned on \\\\germanquad.
45
+ The human baseline was computed for the 3-way test set by taking one answer as prediction and the other two as ground truth.
46
+ ```
47
+ "exact": 79.8366040596311
48
+ "f1": 83.916407079888
49
+ ```
50
+ ![performancetable](https://lh3.google.com/u/0/d/1IFqkq8OZ7TFnGzxmW6eoxXSYa12f2M7O=w1970-h1546-iv1)
51
+
52
+ ## Authors
53
+ - Timo Möller: `timo.moeller [at] deepset.ai`
54
+ - Julian Risch: `julian.risch [at] deepset.ai`
55
+ - Malte Pietsch: `malte.pietsch [at] deepset.ai`
56
+ - Michel Bartels: `michel.bartels [at] deepset.ai`
57
+ ## About us
58
+ ![deepset logo](https://workablehr.s3.amazonaws.com/uploads/account/logo/476306/logo)
59
+ We bring NLP to the industry via open source!
60
+ Our focus: Industry specific language models & large scale QA systems.
61
+
62
+ Some of our work:
63
+ - [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
64
+ - [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad)
65
+ - [FARM](https://github.com/deepset-ai/FARM)
66
+ - [Haystack](https://github.com/deepset-ai/haystack/)
67
+
68
+ Get in touch:
69
+ [Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Slack](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai)
70
+
71
+ By the way: [we're hiring!](http://www.deepset.ai/jobs)