File size: 4,066 Bytes
7f49ac7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import torch
from torch.utils.data import Dataset
import os
from natsort import natsorted
import cv2
import glob
import numpy as np
from PIL import Image
from skimage import io as img

class ImageAndMaskData(Dataset):

    def __init__(self, img_dir, mask_dir, transform=None):

        
        self.images = natsorted(glob.glob(img_dir + "/*"))
        self.masks = natsorted(glob.glob(mask_dir + "/*"))

        self.imgs_and_masks = list(zip(self.images, self.masks))

        self.transform = transform

    def __len__(self):

        return len(self.imgs_and_masks)

    def __getitem__(self, idx):

        data = self.imgs_and_masks[idx]

        img_path = data[0] # image
        mask_path = data[1] # mask 

        #img = cv2.imread(img_path)
        img = np.array(Image.open(img_path))
        mask = np.array(Image.open(mask_path))[:,:,0:1] # take only one channel from mask
        #print(mask.shape)
        #print(mask.sum())

        sample = np.concatenate((img, mask), axis=2)
        #sample = torch.tensor(sample).to(torch.float)

        #sample = img

        sample = Image.fromarray(sample)
        
        #sample = sample.permute((2, 0, 1))

        # convert to 0,1 range
        #sample = sample/255


        #print(sample.shape)

        #print(img.shape)
        #print(mask.shape)
        if self.transform:
            sample = self.transform(sample)
            


        return sample


# New functions to match with SinGAN-Seg process

def make_4_chs_img(image_path, mask_path):
    im = img.imread(image_path)
    mask = img.imread(mask_path)

    # modifications - 22.02.2022
    mask = (mask > 127)*255 # to get clean mask
    # mask = 255 - (mask > 127)*255 # to get inverted mask
    #print(np.unique(mask))

    return np.concatenate((im, mask[:,:,0:1]), axis=2)

def norm(x):
    out = (x -0.5) *2
    return out.clamp(-1, 1)

def denorm(x):
    out = (x + 1) / 2
    return out.clamp(0, 1)

def np2torch(x):
    #if opt.nc_im == 3 or opt.nc_im == 4: # added opt.nc_im == 4 by vajira to handle 4 channel image
    x = x[:,:,:]
    x = x.transpose((2, 0, 1))/255
    
    x = torch.from_numpy(x)
    #if not(opt.not_cuda):
    #    x = move_to_gpu(x, opt.device)
    #x = x.type(torch.cuda.FloatTensor) if not(opt.not_cuda) else x.type(torch.FloatTensor)
    x = x.type(torch.FloatTensor)
    #x = x.type(torch.FloatTensor)
    x = norm(x)
    return x



class ImageAndMaskDataFromSinGAN(Dataset):

    def __init__(self, img_dir, mask_dir, transform=None):

        
        self.images = natsorted(glob.glob(img_dir + "/*"))
        self.masks = natsorted(glob.glob(mask_dir + "/*"))

        self.imgs_and_masks = list(zip(self.images, self.masks))

        self.transform = transform

    def __len__(self):

        return len(self.imgs_and_masks)

    def __getitem__(self, idx):

        data = self.imgs_and_masks[idx]

        image_path = data[0] # image
        mask_path = data[1] # mask 

        #img = cv2.imread(img_path)
        #img = np.array(Image.open(img_path))
       # mask = np.array(Image.open(mask_path))[:,:,0:1] # take only one channel from mask
        #print(mask.shape)
        #print(mask.sum())

        #sample = np.concatenate((img, mask), axis=2)
        #sample = torch.tensor(sample).to(torch.float)

        #sample = img

        sample = make_4_chs_img(image_path, mask_path)#Image.fromarray(sample)

        sample = np2torch(sample)

        sample = sample[0:4,:,:]
        
        #sample = sample.permute((2, 0, 1))

        # convert to 0,1 range
        #sample = sample/255


        #print(sample.shape)

        #print(img.shape)
        #print(mask.shape)
        if self.transform:
            sample = self.transform(sample)
            


        return sample




if __name__ == "__main__":

    dataset = ImageAndMaskDataFromSinGAN("/work/vajira/DATA/kvasir_seg/real_images_root/real_images", 
                                "/work/vajira/DATA/kvasir_seg/real_masks_root/real_masks")

    print(dataset[1].shape)

    #cv2.imwrite("test.png", dataset[1])