Update README.md
Browse files
README.md
CHANGED
@@ -39,7 +39,6 @@ inputs = tokenizer(text, return_tensors='pt')
|
|
39 |
predictions = model(**inputs)
|
40 |
```
|
41 |
|
42 |
-
|
43 |
## Training Details
|
44 |
|
45 |
### Training Data
|
@@ -47,56 +46,54 @@ predictions = model(**inputs)
|
|
47 |
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
48 |
|
49 |
Mix of the following data:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
|
|
51 |
|
52 |
### Training Procedure
|
53 |
|
54 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
55 |
-
|
56 |
-
#### Preprocessing [optional]
|
57 |
-
|
58 |
-
[More Information Needed]
|
59 |
-
|
60 |
-
|
61 |
#### Training Hyperparameters
|
62 |
|
63 |
-
- **Training regime:**
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
72 |
|
73 |
-
|
74 |
|
75 |
-
####
|
76 |
|
77 |
-
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
90 |
-
|
91 |
-
[More Information Needed]
|
92 |
-
|
93 |
-
### Results
|
94 |
-
|
95 |
-
[More Information Needed]
|
96 |
-
|
97 |
-
#### Summary
|
98 |
|
|
|
99 |
|
100 |
-
|
101 |
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
predictions = model(**inputs)
|
40 |
```
|
41 |
|
|
|
42 |
## Training Details
|
43 |
|
44 |
### Training Data
|
|
|
46 |
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
47 |
|
48 |
Mix of the following data:
|
49 |
+
* Wikipedia
|
50 |
+
* Books
|
51 |
+
* Twitter comments
|
52 |
+
* Pikabu
|
53 |
+
* Proza.ru
|
54 |
+
* Film subtitles
|
55 |
+
* News websites
|
56 |
+
* Social corpus
|
57 |
|
58 |
+
~500gb of raw texts
|
59 |
|
60 |
### Training Procedure
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
#### Training Hyperparameters
|
63 |
|
64 |
+
- **Training regime:** fp16 mixed precision
|
65 |
+
- **Training framework:** Fairseq
|
66 |
+
- **Optimizer:** Adam
|
67 |
+
- **Adam betas:** 0.9,0.98
|
68 |
+
- **Adam eps:** 1e-6
|
69 |
+
- **Num training steps:** 500k
|
70 |
+
- **Train batch size:** 4096
|
|
|
|
|
71 |
|
72 |
+
Model was trained using 8xA100 for ~22 days.
|
73 |
|
74 |
+
#### Architecture details
|
75 |
|
76 |
+
Standard RoBERTa-base parameters:
|
77 |
|
78 |
+
- **Activation function:** gelu
|
79 |
+
- **Attention dropout:** 0.1
|
80 |
+
- **Dropout:** 0.1
|
81 |
+
- **Encoder attention heads:** 12
|
82 |
+
- **Encoder embed dim:** 768
|
83 |
+
- **Encoder ffn embed dim:** 3,072
|
84 |
+
- **Encoder layers:** 12
|
85 |
+
- **Max positions:** 512
|
86 |
+
- **Vocab size:** 50266
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
## Evaluation
|
89 |
|
90 |
+
Результаты на Russian Super Glue dev
|
91 |
|
92 |
+
| Модель | RCB | PARus | MuSeRC | TERRa | RUSSE | RWSD | DaNetQA | Результат |
|
93 |
+
|--------------------|-------|-------|--------|-------|-------|-------|---------|-----------|
|
94 |
+
| vk-roberta-base | 0.46 | 0.56 | 0.679 | 0.769 | 0.960 | 0.569 | 0.658 | 0.665 |
|
95 |
+
| vk-deberta-distill | 0.433 | 0.56 | 0.625 | 0.59 | 0.943 | 0.569 | 0.726 | 0.635 |
|
96 |
+
| vk-deberta-base | 0.450 | 0.61 | 0.722 | 0.704 | 0.948 | 0.578 | 0.76 | 0.682 |
|
97 |
+
| vk-bert-base | 0.467 | 0.57 | 0.587 | 0.704 | 0.953 | 0.583 | 0.737 | 0.657 |
|
98 |
+
| sber-roberta-large | 0.463 | 0.61 | 0.775 | 0.886 | 0.946 | 0.564 | 0.761 | 0.715 |
|
99 |
+
| sber-bert-base | 0.491 | 0.61 | 0.663 | 0.769 | 0.962 | 0.574 | 0.678 | 0.678 |
|