Commit
·
fdab3b0
1
Parent(s):
cfe4d17
Update README.md
Browse files
README.md
CHANGED
@@ -4,23 +4,19 @@ language:
|
|
4 |
- ru
|
5 |
- en
|
6 |
library_name: transformers
|
|
|
7 |
---
|
8 |
|
9 |
-
# RoBERTa-base
|
10 |
|
11 |
<!-- Provide a quick summary of what the model is/does. -->
|
12 |
|
13 |
-
Pretrained bidirectional encoder for russian language.
|
|
|
|
|
14 |
|
15 |
-
## Model Details
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
<!-- Provide a longer summary of what this model is. -->
|
20 |
-
Model was pretrained using standard MLM objective on a large text corpora including open social data, books, Wikipedia, webpages etc.
|
21 |
-
|
22 |
-
|
23 |
-
- **Developed by:** VK Applied Research Team
|
24 |
- **Model type:** RoBERTa
|
25 |
- **Languages:** Mostly russian and small fraction of other languages
|
26 |
- **License:** Apache 2.0
|
@@ -43,12 +39,10 @@ predictions = model(**inputs)
|
|
43 |
|
44 |
### Training Data
|
45 |
|
46 |
-
|
47 |
-
News websites, Social corpus.
|
48 |
-
|
49 |
-
### Training Procedure
|
50 |
|
51 |
-
|
52 |
|
53 |
| Argument | Value |
|
54 |
|--------------------|----------------------|
|
@@ -59,36 +53,35 @@ News websites, Social corpus.
|
|
59 |
| Adam eps | 1e-6 |
|
60 |
| Num training steps | 500k |
|
61 |
|
62 |
-
|
63 |
|
64 |
-
|
65 |
|
66 |
-
Standard RoBERTa-base parameters:
|
67 |
|
68 |
| Argument | Value |
|
69 |
|-------------------------|----------------|
|
70 |
-
|
|
71 |
-
|Attention dropout | 0.1 |
|
72 |
-
|Dropout | 0.1 |
|
73 |
|Encoder attention heads | 12 |
|
74 |
|Encoder embed dim | 768 |
|
75 |
|Encoder ffn embed dim | 3,072 |
|
76 |
-
|
|
|
|
|
|
77 |
|Max positions | 512 |
|
78 |
|Vocab size | 50266 |
|
79 |
|Tokenizer type | Byte-level BPE |
|
80 |
|
81 |
## Evaluation
|
82 |
|
83 |
-
Russian Super Glue dev set.
|
84 |
-
|
85 |
-
|
86 |
|
87 |
| Модель | RCB | PARus | MuSeRC | TERRa | RUSSE | RWSD | DaNetQA | Результат |
|
88 |
|------------------------------------------------------------------------|-----------|--------|---------|-------|---------|---------|---------|-----------|
|
89 |
-
| [vk-roberta-base](https://huggingface.co/deepvk/roberta-base) | 0.46 | 0.56 | 0.679 | 0.769 | 0.960 | 0.569 | 0.658 | 0.665 |
|
90 |
| [vk-deberta-distill](https://huggingface.co/deepvk/deberta-v1-distill) | 0.433 | 0.56 | 0.625 | 0.59 | 0.943 | 0.569 | 0.726 | 0.635 |
|
|
|
|
|
91 |
| [vk-deberta-base](https://huggingface.co/deepvk/deberta-v1-base) | 0.450 |**0.61**|**0.722**| 0.704 | 0.948 | 0.578 |**0.76** |**0.682** |
|
92 |
| [vk-bert-base](https://huggingface.co/deepvk/bert-base-uncased) | 0.467 | 0.57 | 0.587 | 0.704 | 0.953 |**0.583**| 0.737 | 0.657 |
|
93 |
-
| [sber-bert-base](https://huggingface.co/ai-forever/ruBert-base) | **0.491** |**0.61**| 0.663 | 0.769 |**0.962**| 0.574 | 0.678 | 0.678 |
|
94 |
-
| [sber-roberta-large](https://huggingface.co/ai-forever/ruRoberta-large)| 0.463 | 0.61 | 0.775 | 0.886 | 0.946 | 0.564 | 0.761 | 0.715 |
|
|
|
4 |
- ru
|
5 |
- en
|
6 |
library_name: transformers
|
7 |
+
pipeline_tag: fill-mask
|
8 |
---
|
9 |
|
10 |
+
# RoBERTa-base
|
11 |
|
12 |
<!-- Provide a quick summary of what the model is/does. -->
|
13 |
|
14 |
+
Pretrained bidirectional encoder for russian language.
|
15 |
+
The model was trained using standard MLM objective on large text corpora including open social data.
|
16 |
+
See [`Training Details`](https://huggingface.co/docs/hub/model-cards#training-details) section for more information
|
17 |
|
|
|
18 |
|
19 |
+
- **Developed by:** [deepvk](https://vk.com/deepvk)
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
- **Model type:** RoBERTa
|
21 |
- **Languages:** Mostly russian and small fraction of other languages
|
22 |
- **License:** Apache 2.0
|
|
|
39 |
|
40 |
### Training Data
|
41 |
|
42 |
+
500 GB of raw text in total.
|
43 |
+
A mix of the following data: Wikipedia, Books, Twitter comments, Pikabu, Proza.ru, Film subtitles, News websites, and Social corpus.
|
|
|
|
|
44 |
|
45 |
+
### Training Hyperparameters
|
46 |
|
47 |
| Argument | Value |
|
48 |
|--------------------|----------------------|
|
|
|
53 |
| Adam eps | 1e-6 |
|
54 |
| Num training steps | 500k |
|
55 |
|
56 |
+
The model was trained on a machine with 8xA100 for approximately 22 days.
|
57 |
|
58 |
+
### Architecture details
|
59 |
|
|
|
60 |
|
61 |
| Argument | Value |
|
62 |
|-------------------------|----------------|
|
63 |
+
|Encoder layers | 12 |
|
|
|
|
|
64 |
|Encoder attention heads | 12 |
|
65 |
|Encoder embed dim | 768 |
|
66 |
|Encoder ffn embed dim | 3,072 |
|
67 |
+
|Activation function | GeLU |
|
68 |
+
|Attention dropout | 0.1 |
|
69 |
+
|Dropout | 0.1 |
|
70 |
|Max positions | 512 |
|
71 |
|Vocab size | 50266 |
|
72 |
|Tokenizer type | Byte-level BPE |
|
73 |
|
74 |
## Evaluation
|
75 |
|
76 |
+
We evaluated the model on [Russian Super Glue](https://russiansuperglue.com/) dev set.
|
77 |
+
The best result in each task is marked in bold.
|
78 |
+
All models have the same size except the distilled version of DeBERTa.
|
79 |
|
80 |
| Модель | RCB | PARus | MuSeRC | TERRa | RUSSE | RWSD | DaNetQA | Результат |
|
81 |
|------------------------------------------------------------------------|-----------|--------|---------|-------|---------|---------|---------|-----------|
|
|
|
82 |
| [vk-deberta-distill](https://huggingface.co/deepvk/deberta-v1-distill) | 0.433 | 0.56 | 0.625 | 0.59 | 0.943 | 0.569 | 0.726 | 0.635 |
|
83 |
+
| | | | | | | | | |
|
84 |
+
| [vk-roberta-base](https://huggingface.co/deepvk/roberta-base) | 0.46 | 0.56 | 0.679 | 0.769 | 0.960 | 0.569 | 0.658 | 0.665 |
|
85 |
| [vk-deberta-base](https://huggingface.co/deepvk/deberta-v1-base) | 0.450 |**0.61**|**0.722**| 0.704 | 0.948 | 0.578 |**0.76** |**0.682** |
|
86 |
| [vk-bert-base](https://huggingface.co/deepvk/bert-base-uncased) | 0.467 | 0.57 | 0.587 | 0.704 | 0.953 |**0.583**| 0.737 | 0.657 |
|
87 |
+
| [sber-bert-base](https://huggingface.co/ai-forever/ruBert-base) | **0.491** |**0.61**| 0.663 | 0.769 |**0.962**| 0.574 | 0.678 | 0.678 |
|
|