--- license: mit widget: - text: "generate question: Der Monk Sour Drink ist ein somit eine aromatische Überraschung, die sowohl im Sommer wie auch zu Silvester funktioniert." language: - de tags: - question generation datasets: - deepset/germanquad model-index: - name: german-qg-t5-drink600 results: [] --- # german-qg-t5-drink600 This model is fine-tuned in question generation in German. The expected answer must be highlighted with <hl> token. It is based on [german-qg-t5-quad](https://huggingface.co/dehio/german-qg-t5-quad) and further pre-trained on drink related questions. ## Task example #### Input generate question: Der Monk Sour Drink ist ein somit eine aromatische Überraschung, die sowohl im Sommer wie auch zu Silvester funktioniert. #### Expected Question Zu welchen Gelegenheiten passt der Monk Sour gut? ## Model description The model is based on [german-qg-t5-quad](https://huggingface.co/dehio/german-qg-t5-quad), which was pre-trained on [GermanQUAD](https://www.deepset.ai/germanquad). We further pre-trained it on questions annotated on drink receipts from [Mixology](https://mixology.eu/) ("drink600"). We have not yet open sourced the dataset, since we do not own copyright on the source material. ## Training and evaluation data The training script can be accessed [here](https://github.com/d-e-h-i-o/german-qg). ## Evaluation It achieves a **BLEU-4 score of 29.80** on the drink600 test set (n=120) and **11.30** on the GermanQUAD test set. Thus, fine-tuning on drink600 did not affect performance on GermanQuAD. In comparison, *german-qg-t5-quad* achieves a BLEU-4 score of **10.76** on the drink600 test set. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 100 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3