dejanseo's picture
Create demo.py
eca2e65 verified
import streamlit as st
import tensorflow as tf
import sentencepiece as spm
import numpy as np
from scipy.spatial.distance import cosine
import pandas as pd
from openTSNE import TSNE
import plotly.express as px
# Set Streamlit layout to wide mode
st.set_page_config(layout="wide")
# Load the TFLite model and SentencePiece model
tflite_model_path = "model.tflite"
spm_model_path = "sentencepiece.model"
sp = spm.SentencePieceProcessor()
sp.load(spm_model_path)
interpreter = tf.lite.Interpreter(model_path=tflite_model_path)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
required_input_length = 64 # Fixed length of 64 tokens
# Function to preprocess text input
def preprocess_text(text, sp, required_length):
input_ids = sp.encode(text, out_type=int)
input_ids = input_ids[:required_length] + [0] * (required_length - len(input_ids))
return np.array(input_ids, dtype=np.int32).reshape(1, -1)
# Function to generate embeddings
def generate_embeddings(text):
input_data = preprocess_text(text, sp, required_input_length)
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
embedding = interpreter.get_tensor(output_details[0]['index'])
return embedding.flatten()
# Predefined sentence sets
preset_sentences_a = [
"Dan Petrovic predicted conversational search in 2013.",
"Understanding user intent is key to effective SEO.",
"Dejan SEO has been a leader in data-driven SEO.",
"Machine learning is transforming search engines.",
"The future of search is AI-driven and personalized.",
"Search algorithms are evolving to better match user intent.",
"AI technologies enhance digital marketing strategies."
]
preset_sentences_b = [
"Advances in machine learning reshape how search engines operate.",
"Personalized content is becoming more prevalent with AI.",
"Customer behavior insights are crucial for marketing strategies.",
"Dan Petrovic anticipated the rise of chat-based search interactions.",
"Dejan SEO is recognized for innovative SEO research and analysis.",
"Quantum computing is advancing rapidly in the tech world.",
"Studying user behavior can improve the effectiveness of online ads."
]
# Initialize session state for input fields if not already set
if "input_text_a" not in st.session_state:
st.session_state["input_text_a"] = "\n".join(preset_sentences_a)
if "input_text_b" not in st.session_state:
st.session_state["input_text_b"] = "\n".join(preset_sentences_b)
# Clear button to reset text areas
if st.button("Clear Fields"):
st.session_state["input_text_a"] = ""
st.session_state["input_text_b"] = ""
# Side-by-side layout for Set A and Set B inputs
col1, col2 = st.columns(2)
with col1:
st.subheader("Set A Sentences")
input_text_a = st.text_area("Set A", value=st.session_state["input_text_a"], height=200)
with col2:
st.subheader("Set B Sentences")
input_text_b = st.text_area("Set B", value=st.session_state["input_text_b"], height=200)
# Slider to control t-SNE iteration steps
iterations = st.slider("Number of t-SNE Iterations (Higher values = more refined clusters)", 250, 1000, step=250)
# Submit button
if st.button("Calculate Similarity"):
sentences_a = [line.strip() for line in input_text_a.split("\n") if line.strip()]
sentences_b = [line.strip() for line in input_text_b.split("\n") if line.strip()]
if len(sentences_a) > 0 and len(sentences_b) > 0:
# Generate embeddings for both sets
embeddings_a = [generate_embeddings(sentence) for sentence in sentences_a]
embeddings_b = [generate_embeddings(sentence) for sentence in sentences_b]
# Combine sentences and embeddings for both sets
all_sentences = sentences_a + sentences_b
all_embeddings = np.array(embeddings_a + embeddings_b) # Convert to NumPy array
labels = ["Set A"] * len(sentences_a) + ["Set B"] * len(sentences_b)
# Set perplexity dynamically based on number of samples
perplexity_value = min(5, len(all_sentences) - 1)
# Perform 3D t-SNE with OpenTSNE, limiting the number of iterations
tsne = TSNE(n_components=3, perplexity=perplexity_value, n_iter=iterations, initialization="pca", random_state=42)
tsne_results = tsne.fit(all_embeddings)
# Prepare DataFrame for Plotly
df_tsne = pd.DataFrame({
"Sentence": all_sentences,
"Set": labels,
"X": tsne_results[:, 0],
"Y": tsne_results[:, 1],
"Z": tsne_results[:, 2]
})
# Plot 3D t-SNE results with Plotly
fig = px.scatter_3d(df_tsne, x="X", y="Y", z="Z", color="Set", hover_data={"Sentence": True},
title="Incremental 3D t-SNE Visualization of Sentence Similarity",
labels={"X": "t-SNE Dimension 1", "Y": "t-SNE Dimension 2", "Z": "t-SNE Dimension 3"},
width=1200, height=800) # Increased chart width and height
fig.update_traces(marker=dict(size=5, opacity=0.8))
# Display interactive Plotly plot
st.plotly_chart(fig)
# Display expandable embeddings
st.subheader("Embeddings for each sentence in Set A")
for i, (sentence, embedding) in enumerate(zip(sentences_a, embeddings_a)):
with st.expander(f"Embedding for Sentence A{i+1}: {sentence}"):
st.write(", ".join([f"{x:.4f}" for x in embedding])) # Comma-separated values
st.subheader("Embeddings for each sentence in Set B")
for i, (sentence, embedding) in enumerate(zip(sentences_b, embeddings_b)):
with st.expander(f"Embedding for Sentence B{i+1}: {sentence}"):
st.write(", ".join([f"{x:.4f}" for x in embedding])) # Comma-separated values
else:
st.warning("Please enter sentences in both Set A and Set B.")