Subida inicial del modelo
Browse files- inference.py +15 -0
- requirements.txt +5 -0
inference.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
3 |
+
|
4 |
+
# Cargar el modelo y el vectorizador
|
5 |
+
with open('vectorizer.pkl', 'rb') as f:
|
6 |
+
vectorizer = pickle.load(f)
|
7 |
+
|
8 |
+
with open('model.pkl', 'rb') as f:
|
9 |
+
model = pickle.load(f)
|
10 |
+
|
11 |
+
def predict(text):
|
12 |
+
# Preprocesar el texto usando el vectorizador
|
13 |
+
X = vectorizer.transform([text])
|
14 |
+
# Hacer una predicción usando el modelo
|
15 |
+
return model.predict(X)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
scikit-learn
|
3 |
+
imbalanced-learn
|
4 |
+
joblib
|
5 |
+
numpy
|