pushing files to the repo from the example!
Browse files- README.md +281 -0
- config.json +159 -0
- confusion_matrix.png +0 -0
- model.pkl +3 -0
- tree.png +0 -0
README.md
ADDED
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sklearn
|
3 |
+
tags:
|
4 |
+
- sklearn
|
5 |
+
- skops
|
6 |
+
- tabular-classification
|
7 |
+
widget:
|
8 |
+
structuredData:
|
9 |
+
attribute_0:
|
10 |
+
- material_7
|
11 |
+
- material_7
|
12 |
+
- material_7
|
13 |
+
attribute_1:
|
14 |
+
- material_8
|
15 |
+
- material_6
|
16 |
+
- material_8
|
17 |
+
attribute_2:
|
18 |
+
- 9
|
19 |
+
- 6
|
20 |
+
- 5
|
21 |
+
attribute_3:
|
22 |
+
- 5
|
23 |
+
- 9
|
24 |
+
- 8
|
25 |
+
loading:
|
26 |
+
- 119.49
|
27 |
+
- 85.36
|
28 |
+
- 73.71
|
29 |
+
measurement_0:
|
30 |
+
- 11
|
31 |
+
- 10
|
32 |
+
- 24
|
33 |
+
measurement_1:
|
34 |
+
- 2
|
35 |
+
- 8
|
36 |
+
- 7
|
37 |
+
measurement_10:
|
38 |
+
- 17.138
|
39 |
+
- 15.632
|
40 |
+
- 15.854
|
41 |
+
measurement_11:
|
42 |
+
- 19.954
|
43 |
+
- 18.992
|
44 |
+
- 20.405
|
45 |
+
measurement_12:
|
46 |
+
- 12.348
|
47 |
+
- .nan
|
48 |
+
- 13.638
|
49 |
+
measurement_13:
|
50 |
+
- 13.93
|
51 |
+
- 15.148
|
52 |
+
- .nan
|
53 |
+
measurement_14:
|
54 |
+
- 15.889
|
55 |
+
- .nan
|
56 |
+
- 15.854
|
57 |
+
measurement_15:
|
58 |
+
- 15.831
|
59 |
+
- 15.849
|
60 |
+
- 16.555
|
61 |
+
measurement_16:
|
62 |
+
- 16.102
|
63 |
+
- 15.896
|
64 |
+
- 17.145
|
65 |
+
measurement_17:
|
66 |
+
- 643.509
|
67 |
+
- 722.585
|
68 |
+
- 802.57
|
69 |
+
measurement_2:
|
70 |
+
- 3
|
71 |
+
- 3
|
72 |
+
- 7
|
73 |
+
measurement_3:
|
74 |
+
- 17.659
|
75 |
+
- 19.679
|
76 |
+
- 17.291
|
77 |
+
measurement_4:
|
78 |
+
- 11.578
|
79 |
+
- 11.49
|
80 |
+
- 11.691
|
81 |
+
measurement_5:
|
82 |
+
- 15.514
|
83 |
+
- 18.267
|
84 |
+
- 18.289
|
85 |
+
measurement_6:
|
86 |
+
- 15.99
|
87 |
+
- 17.921
|
88 |
+
- 17.396
|
89 |
+
measurement_7:
|
90 |
+
- 12.231
|
91 |
+
- 11.978
|
92 |
+
- 11.361
|
93 |
+
measurement_8:
|
94 |
+
- 19.92
|
95 |
+
- 18.135
|
96 |
+
- 19.67
|
97 |
+
measurement_9:
|
98 |
+
- 10.555
|
99 |
+
- 11.113
|
100 |
+
- 11.375
|
101 |
+
product_code:
|
102 |
+
- A
|
103 |
+
- E
|
104 |
+
- C
|
105 |
+
---
|
106 |
+
|
107 |
+
# Model description
|
108 |
+
|
109 |
+
This is a DecisionTreeClassifier model built for Kaggle Tabular Playground Series August 2022, trained on supersoaker production failures dataset.
|
110 |
+
|
111 |
+
## Intended uses & limitations
|
112 |
+
|
113 |
+
This model is not ready to be used in production.
|
114 |
+
|
115 |
+
## Training Procedure
|
116 |
+
|
117 |
+
### Hyperparameters
|
118 |
+
|
119 |
+
The model is trained with below hyperparameters.
|
120 |
+
|
121 |
+
<details>
|
122 |
+
<summary> Click to expand </summary>
|
123 |
+
|
124 |
+
| Hyperparameter | Value |
|
125 |
+
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
126 |
+
| memory | |
|
127 |
+
| steps | [('transformation', ColumnTransformer(transformers=[('loading_missing_value_imputer',
|
128 |
+
SimpleImputer(), ['loading']),
|
129 |
+
('numerical_missing_value_imputer',
|
130 |
+
SimpleImputer(),
|
131 |
+
['loading', 'measurement_3', 'measurement_4',
|
132 |
+
'measurement_5', 'measurement_6',
|
133 |
+
'measurement_7', 'measurement_8',
|
134 |
+
'measurement_9', 'measurement_10',
|
135 |
+
'measurement_11', 'measurement_12',
|
136 |
+
'measurement_13', 'measurement_14',
|
137 |
+
'measurement_15', 'measurement_16',
|
138 |
+
'measurement_17']),
|
139 |
+
('attribute_0_encoder', OneHotEncoder(),
|
140 |
+
['attribute_0']),
|
141 |
+
('attribute_1_encoder', OneHotEncoder(),
|
142 |
+
['attribute_1']),
|
143 |
+
('product_code_encoder', OneHotEncoder(),
|
144 |
+
['product_code'])])), ('model', DecisionTreeClassifier(max_depth=4))] |
|
145 |
+
| verbose | False |
|
146 |
+
| transformation | ColumnTransformer(transformers=[('loading_missing_value_imputer',
|
147 |
+
SimpleImputer(), ['loading']),
|
148 |
+
('numerical_missing_value_imputer',
|
149 |
+
SimpleImputer(),
|
150 |
+
['loading', 'measurement_3', 'measurement_4',
|
151 |
+
'measurement_5', 'measurement_6',
|
152 |
+
'measurement_7', 'measurement_8',
|
153 |
+
'measurement_9', 'measurement_10',
|
154 |
+
'measurement_11', 'measurement_12',
|
155 |
+
'measurement_13', 'measurement_14',
|
156 |
+
'measurement_15', 'measurement_16',
|
157 |
+
'measurement_17']),
|
158 |
+
('attribute_0_encoder', OneHotEncoder(),
|
159 |
+
['attribute_0']),
|
160 |
+
('attribute_1_encoder', OneHotEncoder(),
|
161 |
+
['attribute_1']),
|
162 |
+
('product_code_encoder', OneHotEncoder(),
|
163 |
+
['product_code'])]) |
|
164 |
+
| model | DecisionTreeClassifier(max_depth=4) |
|
165 |
+
| transformation__n_jobs | |
|
166 |
+
| transformation__remainder | drop |
|
167 |
+
| transformation__sparse_threshold | 0.3 |
|
168 |
+
| transformation__transformer_weights | |
|
169 |
+
| transformation__transformers | [('loading_missing_value_imputer', SimpleImputer(), ['loading']), ('numerical_missing_value_imputer', SimpleImputer(), ['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']), ('attribute_0_encoder', OneHotEncoder(), ['attribute_0']), ('attribute_1_encoder', OneHotEncoder(), ['attribute_1']), ('product_code_encoder', OneHotEncoder(), ['product_code'])] |
|
170 |
+
| transformation__verbose | False |
|
171 |
+
| transformation__verbose_feature_names_out | True |
|
172 |
+
| transformation__loading_missing_value_imputer | SimpleImputer() |
|
173 |
+
| transformation__numerical_missing_value_imputer | SimpleImputer() |
|
174 |
+
| transformation__attribute_0_encoder | OneHotEncoder() |
|
175 |
+
| transformation__attribute_1_encoder | OneHotEncoder() |
|
176 |
+
| transformation__product_code_encoder | OneHotEncoder() |
|
177 |
+
| transformation__loading_missing_value_imputer__add_indicator | False |
|
178 |
+
| transformation__loading_missing_value_imputer__copy | True |
|
179 |
+
| transformation__loading_missing_value_imputer__fill_value | |
|
180 |
+
| transformation__loading_missing_value_imputer__missing_values | nan |
|
181 |
+
| transformation__loading_missing_value_imputer__strategy | mean |
|
182 |
+
| transformation__loading_missing_value_imputer__verbose | 0 |
|
183 |
+
| transformation__numerical_missing_value_imputer__add_indicator | False |
|
184 |
+
| transformation__numerical_missing_value_imputer__copy | True |
|
185 |
+
| transformation__numerical_missing_value_imputer__fill_value | |
|
186 |
+
| transformation__numerical_missing_value_imputer__missing_values | nan |
|
187 |
+
| transformation__numerical_missing_value_imputer__strategy | mean |
|
188 |
+
| transformation__numerical_missing_value_imputer__verbose | 0 |
|
189 |
+
| transformation__attribute_0_encoder__categories | auto |
|
190 |
+
| transformation__attribute_0_encoder__drop | |
|
191 |
+
| transformation__attribute_0_encoder__dtype | <class 'numpy.float64'> |
|
192 |
+
| transformation__attribute_0_encoder__handle_unknown | error |
|
193 |
+
| transformation__attribute_0_encoder__sparse | True |
|
194 |
+
| transformation__attribute_1_encoder__categories | auto |
|
195 |
+
| transformation__attribute_1_encoder__drop | |
|
196 |
+
| transformation__attribute_1_encoder__dtype | <class 'numpy.float64'> |
|
197 |
+
| transformation__attribute_1_encoder__handle_unknown | error |
|
198 |
+
| transformation__attribute_1_encoder__sparse | True |
|
199 |
+
| transformation__product_code_encoder__categories | auto |
|
200 |
+
| transformation__product_code_encoder__drop | |
|
201 |
+
| transformation__product_code_encoder__dtype | <class 'numpy.float64'> |
|
202 |
+
| transformation__product_code_encoder__handle_unknown | error |
|
203 |
+
| transformation__product_code_encoder__sparse | True |
|
204 |
+
| model__ccp_alpha | 0.0 |
|
205 |
+
| model__class_weight | |
|
206 |
+
| model__criterion | gini |
|
207 |
+
| model__max_depth | 4 |
|
208 |
+
| model__max_features | |
|
209 |
+
| model__max_leaf_nodes | |
|
210 |
+
| model__min_impurity_decrease | 0.0 |
|
211 |
+
| model__min_samples_leaf | 1 |
|
212 |
+
| model__min_samples_split | 2 |
|
213 |
+
| model__min_weight_fraction_leaf | 0.0 |
|
214 |
+
| model__random_state | |
|
215 |
+
| model__splitter | best |
|
216 |
+
|
217 |
+
</details>
|
218 |
+
|
219 |
+
### Model Plot
|
220 |
+
|
221 |
+
The model plot is below.
|
222 |
+
|
223 |
+
<style>#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 {color: black;background-color: white;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 pre{padding: 0;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-toggleable {background-color: white;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-estimator:hover {background-color: #d4ebff;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-item {z-index: 1;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-parallel-item:only-child::after {width: 0;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-text-repr-fallback {display: none;}</style><div id="sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('transformation',ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(),['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3','measurement_4','measurement_5','measurement_6','measurement_7','measurement_8','measurement_9','measurement_10','measurement_11','measurement_12','measurement_13','measurement_14','measurement_15','measurement_16','measurement_17']),('attribute_0_encoder',OneHotEncoder(),['attribute_0']),('attribute_1_encoder',OneHotEncoder(),['attribute_1']),('product_code_encoder',OneHotEncoder(),['product_code'])])),('model', DecisionTreeClassifier(max_depth=4))])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="82f19dd0-da3e-499c-84b9-f67ed489906d" type="checkbox" ><label for="82f19dd0-da3e-499c-84b9-f67ed489906d" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('transformation',ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(),['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3','measurement_4','measurement_5','measurement_6','measurement_7','measurement_8','measurement_9','measurement_10','measurement_11','measurement_12','measurement_13','measurement_14','measurement_15','measurement_16','measurement_17']),('attribute_0_encoder',OneHotEncoder(),['attribute_0']),('attribute_1_encoder',OneHotEncoder(),['attribute_1']),('product_code_encoder',OneHotEncoder(),['product_code'])])),('model', DecisionTreeClassifier(max_depth=4))])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="e3bc6996-eefc-4601-a7df-7850743b36d6" type="checkbox" ><label for="e3bc6996-eefc-4601-a7df-7850743b36d6" class="sk-toggleable__label sk-toggleable__label-arrow">transformation: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(), ['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3', 'measurement_4','measurement_5', 'measurement_6','measurement_7', 'measurement_8','measurement_9', 'measurement_10','measurement_11', 'measurement_12','measurement_13', 'measurement_14','measurement_15', 'measurement_16','measurement_17']),('attribute_0_encoder', OneHotEncoder(),['attribute_0']),('attribute_1_encoder', OneHotEncoder(),['attribute_1']),('product_code_encoder', OneHotEncoder(),['product_code'])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="9cc3e3ef-17e8-4bf4-a121-0a29a377373e" type="checkbox" ><label for="9cc3e3ef-17e8-4bf4-a121-0a29a377373e" class="sk-toggleable__label sk-toggleable__label-arrow">loading_missing_value_imputer</label><div class="sk-toggleable__content"><pre>['loading']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="e7ba5c2d-3bf3-444f-be00-0ecf4b563cd7" type="checkbox" ><label for="e7ba5c2d-3bf3-444f-be00-0ecf4b563cd7" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="2277368d-30f2-46c1-a283-9f0ccf350872" type="checkbox" ><label for="2277368d-30f2-46c1-a283-9f0ccf350872" class="sk-toggleable__label sk-toggleable__label-arrow">numerical_missing_value_imputer</label><div class="sk-toggleable__content"><pre>['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="2a49159e-c23f-4cbe-92bb-09bb64c1354d" type="checkbox" ><label for="2a49159e-c23f-4cbe-92bb-09bb64c1354d" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="c87d52bb-0b23-4e43-abe8-afc3759dac02" type="checkbox" ><label for="c87d52bb-0b23-4e43-abe8-afc3759dac02" class="sk-toggleable__label sk-toggleable__label-arrow">attribute_0_encoder</label><div class="sk-toggleable__content"><pre>['attribute_0']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="023971df-ed99-4eaf-8f0d-cd115bacbb45" type="checkbox" ><label for="023971df-ed99-4eaf-8f0d-cd115bacbb45" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="111f5303-3f63-409a-9dc1-74ab94419974" type="checkbox" ><label for="111f5303-3f63-409a-9dc1-74ab94419974" class="sk-toggleable__label sk-toggleable__label-arrow">attribute_1_encoder</label><div class="sk-toggleable__content"><pre>['attribute_1']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="c858e1b1-b68f-4700-9111-32772a7b51ab" type="checkbox" ><label for="c858e1b1-b68f-4700-9111-32772a7b51ab" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="5ce65801-d4be-48d4-81d3-7998e483cf65" type="checkbox" ><label for="5ce65801-d4be-48d4-81d3-7998e483cf65" class="sk-toggleable__label sk-toggleable__label-arrow">product_code_encoder</label><div class="sk-toggleable__content"><pre>['product_code']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="75a1cce7-c7f7-41cf-bb4d-8e403291a41b" type="checkbox" ><label for="75a1cce7-c7f7-41cf-bb4d-8e403291a41b" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="3c311565-4080-492c-b353-fbc41e1c17d5" type="checkbox" ><label for="3c311565-4080-492c-b353-fbc41e1c17d5" class="sk-toggleable__label sk-toggleable__label-arrow">DecisionTreeClassifier</label><div class="sk-toggleable__content"><pre>DecisionTreeClassifier(max_depth=4)</pre></div></div></div></div></div></div></div>
|
224 |
+
|
225 |
+
## Evaluation Results
|
226 |
+
|
227 |
+
You can find the details about evaluation process and the evaluation results.
|
228 |
+
|
229 |
+
|
230 |
+
|
231 |
+
| Metric | Value |
|
232 |
+
|----------|----------|
|
233 |
+
| accuracy | 0.786392 |
|
234 |
+
| f1 score | 0.786392 |
|
235 |
+
|
236 |
+
# How to Get Started with the Model
|
237 |
+
|
238 |
+
Use the code below to get started with the model.
|
239 |
+
|
240 |
+
<details>
|
241 |
+
<summary> Click to expand </summary>
|
242 |
+
|
243 |
+
```python
|
244 |
+
import pickle
|
245 |
+
with open(decision-tree-playground-kaggle/model.pkl, 'rb') as file:
|
246 |
+
clf = pickle.load(file)
|
247 |
+
```
|
248 |
+
|
249 |
+
</details>
|
250 |
+
|
251 |
+
|
252 |
+
|
253 |
+
|
254 |
+
# Model Card Authors
|
255 |
+
|
256 |
+
This model card is written by following authors:
|
257 |
+
|
258 |
+
huggingface
|
259 |
+
|
260 |
+
# Model Card Contact
|
261 |
+
|
262 |
+
You can contact the model card authors through following channels:
|
263 |
+
[More Information Needed]
|
264 |
+
|
265 |
+
# Citation
|
266 |
+
|
267 |
+
Below you can find information related to citation.
|
268 |
+
|
269 |
+
**BibTeX:**
|
270 |
+
```
|
271 |
+
[More Information Needed]
|
272 |
+
```
|
273 |
+
|
274 |
+
|
275 |
+
Tree Plot
|
276 |
+
![Tree Plot](decision-tree-playground-kaggle/tree.png)
|
277 |
+
|
278 |
+
|
279 |
+
|
280 |
+
Confusion Matrix
|
281 |
+
![Confusion Matrix](decision-tree-playground-kaggle/confusion_matrix.png)
|
config.json
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"sklearn": {
|
3 |
+
"columns": [
|
4 |
+
"product_code",
|
5 |
+
"loading",
|
6 |
+
"attribute_0",
|
7 |
+
"attribute_1",
|
8 |
+
"attribute_2",
|
9 |
+
"attribute_3",
|
10 |
+
"measurement_0",
|
11 |
+
"measurement_1",
|
12 |
+
"measurement_2",
|
13 |
+
"measurement_3",
|
14 |
+
"measurement_4",
|
15 |
+
"measurement_5",
|
16 |
+
"measurement_6",
|
17 |
+
"measurement_7",
|
18 |
+
"measurement_8",
|
19 |
+
"measurement_9",
|
20 |
+
"measurement_10",
|
21 |
+
"measurement_11",
|
22 |
+
"measurement_12",
|
23 |
+
"measurement_13",
|
24 |
+
"measurement_14",
|
25 |
+
"measurement_15",
|
26 |
+
"measurement_16",
|
27 |
+
"measurement_17"
|
28 |
+
],
|
29 |
+
"environment": [
|
30 |
+
"scikit-learn=1.0.2"
|
31 |
+
],
|
32 |
+
"example_input": {
|
33 |
+
"attribute_0": [
|
34 |
+
"material_7",
|
35 |
+
"material_7",
|
36 |
+
"material_7"
|
37 |
+
],
|
38 |
+
"attribute_1": [
|
39 |
+
"material_8",
|
40 |
+
"material_6",
|
41 |
+
"material_8"
|
42 |
+
],
|
43 |
+
"attribute_2": [
|
44 |
+
9,
|
45 |
+
6,
|
46 |
+
5
|
47 |
+
],
|
48 |
+
"attribute_3": [
|
49 |
+
5,
|
50 |
+
9,
|
51 |
+
8
|
52 |
+
],
|
53 |
+
"loading": [
|
54 |
+
119.49,
|
55 |
+
85.36,
|
56 |
+
73.71
|
57 |
+
],
|
58 |
+
"measurement_0": [
|
59 |
+
11,
|
60 |
+
10,
|
61 |
+
24
|
62 |
+
],
|
63 |
+
"measurement_1": [
|
64 |
+
2,
|
65 |
+
8,
|
66 |
+
7
|
67 |
+
],
|
68 |
+
"measurement_10": [
|
69 |
+
17.138,
|
70 |
+
15.632,
|
71 |
+
15.854
|
72 |
+
],
|
73 |
+
"measurement_11": [
|
74 |
+
19.954,
|
75 |
+
18.992,
|
76 |
+
20.405
|
77 |
+
],
|
78 |
+
"measurement_12": [
|
79 |
+
12.348,
|
80 |
+
NaN,
|
81 |
+
13.638
|
82 |
+
],
|
83 |
+
"measurement_13": [
|
84 |
+
13.93,
|
85 |
+
15.148,
|
86 |
+
NaN
|
87 |
+
],
|
88 |
+
"measurement_14": [
|
89 |
+
15.889,
|
90 |
+
NaN,
|
91 |
+
15.854
|
92 |
+
],
|
93 |
+
"measurement_15": [
|
94 |
+
15.831,
|
95 |
+
15.849,
|
96 |
+
16.555
|
97 |
+
],
|
98 |
+
"measurement_16": [
|
99 |
+
16.102,
|
100 |
+
15.896,
|
101 |
+
17.145
|
102 |
+
],
|
103 |
+
"measurement_17": [
|
104 |
+
643.509,
|
105 |
+
722.585,
|
106 |
+
802.57
|
107 |
+
],
|
108 |
+
"measurement_2": [
|
109 |
+
3,
|
110 |
+
3,
|
111 |
+
7
|
112 |
+
],
|
113 |
+
"measurement_3": [
|
114 |
+
17.659,
|
115 |
+
19.679,
|
116 |
+
17.291
|
117 |
+
],
|
118 |
+
"measurement_4": [
|
119 |
+
11.578,
|
120 |
+
11.49,
|
121 |
+
11.691
|
122 |
+
],
|
123 |
+
"measurement_5": [
|
124 |
+
15.514,
|
125 |
+
18.267,
|
126 |
+
18.289
|
127 |
+
],
|
128 |
+
"measurement_6": [
|
129 |
+
15.99,
|
130 |
+
17.921,
|
131 |
+
17.396
|
132 |
+
],
|
133 |
+
"measurement_7": [
|
134 |
+
12.231,
|
135 |
+
11.978,
|
136 |
+
11.361
|
137 |
+
],
|
138 |
+
"measurement_8": [
|
139 |
+
19.92,
|
140 |
+
18.135,
|
141 |
+
19.67
|
142 |
+
],
|
143 |
+
"measurement_9": [
|
144 |
+
10.555,
|
145 |
+
11.113,
|
146 |
+
11.375
|
147 |
+
],
|
148 |
+
"product_code": [
|
149 |
+
"A",
|
150 |
+
"E",
|
151 |
+
"C"
|
152 |
+
]
|
153 |
+
},
|
154 |
+
"model": {
|
155 |
+
"file": "model.pkl"
|
156 |
+
},
|
157 |
+
"task": "tabular-classification"
|
158 |
+
}
|
159 |
+
}
|
confusion_matrix.png
ADDED
model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b657336bbde87de9beb4cffee3e500e48379fca8417bcdf538ceea6e6d59bb9
|
3 |
+
size 6824
|
tree.png
ADDED