File size: 1,854 Bytes
c71698b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: ViT_MNIST
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ViT_MNIST

This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2367
- Accuracy: 0.9379

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 5500
- eval_batch_size: 5500
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3795        | 1.0   | 11   | 0.3894          | 0.897    |
| 0.3668        | 2.0   | 22   | 0.3547          | 0.9059   |
| 0.3441        | 3.0   | 33   | 0.3186          | 0.9174   |
| 0.3163        | 4.0   | 44   | 0.2998          | 0.9235   |
| 0.299         | 5.0   | 55   | 0.2860          | 0.9259   |
| 0.2788        | 6.0   | 66   | 0.2770          | 0.9291   |
| 0.2684        | 7.0   | 77   | 0.2553          | 0.9342   |
| 0.2579        | 8.0   | 88   | 0.2545          | 0.9338   |
| 0.2449        | 9.0   | 99   | 0.2403          | 0.9378   |
| 0.2322        | 10.0  | 110  | 0.2367          | 0.9379   |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1