--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: ViT_MNIST results: [] --- # ViT_MNIST This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2367 - Accuracy: 0.9379 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 5500 - eval_batch_size: 5500 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3795 | 1.0 | 11 | 0.3894 | 0.897 | | 0.3668 | 2.0 | 22 | 0.3547 | 0.9059 | | 0.3441 | 3.0 | 33 | 0.3186 | 0.9174 | | 0.3163 | 4.0 | 44 | 0.2998 | 0.9235 | | 0.299 | 5.0 | 55 | 0.2860 | 0.9259 | | 0.2788 | 6.0 | 66 | 0.2770 | 0.9291 | | 0.2684 | 7.0 | 77 | 0.2553 | 0.9342 | | 0.2579 | 8.0 | 88 | 0.2545 | 0.9338 | | 0.2449 | 9.0 | 99 | 0.2403 | 0.9378 | | 0.2322 | 10.0 | 110 | 0.2367 | 0.9379 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1