File size: 6,008 Bytes
a7028ed
 
 
 
 
 
613be2f
0b62d38
 
 
 
a7028ed
 
0b62d38
 
 
 
 
613be2f
 
0b62d38
 
 
 
 
 
 
 
 
 
 
 
 
a7028ed
 
 
 
 
 
 
613be2f
 
0b62d38
 
 
 
 
a7028ed
 
613be2f
a7028ed
613be2f
a7028ed
613be2f
a7028ed
613be2f
 
 
 
 
a7028ed
613be2f
 
 
 
a7028ed
 
 
 
 
 
0e08b02
a7028ed
 
 
 
0e08b02
a7028ed
0b62d38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7028ed
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- FastJobs/Visual_Emotional_Analysis
metrics:
- accuracy
- precision
- f1
model-index:
- name: emo-vit-base-patch16-224-in21k
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: FastJobs/Visual_Emotional_Analysis
      type: FastJobs/Visual_Emotional_Analysis
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.61875
    - name: Precision
      type: precision
      value: 0.6229001976284585
    - name: F1
      type: f1
      value: 0.6163114517061885
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# emo-vit-base-patch16-224-in21k

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) 
on the [FastJobs/Visual_Emotional_Analysis](https://huggingface.co/datasets/FastJobs/Visual_Emotional_Analysis) dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2392
- Accuracy: 0.6188
- Precision: 0.6229
- F1: 0.6163


## Training and evaluation data

### Data Split

Used a 4:1 ratio for training and development sets and a seed of 42.

### Pre-processing Augmentation

The main pre-processing phase for both training and evaluation includes:
- Resizing to (224, 224, 3)
- Normalizing images using a mean and standard deviation of [0.5, 0.5, 0.5]

Other than the aforementioned pre-processing, the training set was augmented using:
- Random horizontal & vertical flip
- Color jitter
- Random resized crop

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 10
- num_epochs: 100

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|
| 2.0652        | 1.0   | 10   | 1.9712          | 0.35     | 0.3441    | 0.3294 |
| 1.9006        | 2.0   | 20   | 1.6055          | 0.425    | 0.3497    | 0.3578 |
| 1.6274        | 3.0   | 30   | 1.4991          | 0.4875   | 0.5747    | 0.4621 |
| 1.4742        | 4.0   | 40   | 1.4417          | 0.4313   | 0.4744    | 0.4037 |
| 1.3546        | 5.0   | 50   | 1.3699          | 0.4125   | 0.3896    | 0.3387 |
| 1.2574        | 6.0   | 60   | 1.2200          | 0.5125   | 0.5072    | 0.4783 |
| 1.183         | 7.0   | 70   | 1.1368          | 0.5375   | 0.5802    | 0.5341 |
| 1.0869        | 8.0   | 80   | 1.1332          | 0.5687   | 0.6024    | 0.5622 |
| 1.002         | 9.0   | 90   | 1.1178          | 0.55     | 0.5663    | 0.5423 |
| 0.9453        | 10.0  | 100  | 1.1601          | 0.5563   | 0.5994    | 0.5515 |
| 0.9495        | 11.0  | 110  | 1.1202          | 0.525    | 0.5695    | 0.5266 |
| 0.7805        | 12.0  | 120  | 1.1620          | 0.5375   | 0.5577    | 0.5323 |
| 0.7487        | 13.0  | 130  | 1.2094          | 0.5687   | 0.6218    | 0.5716 |
| 0.6805        | 14.0  | 140  | 1.2662          | 0.5437   | 0.5875    | 0.5345 |
| 0.6491        | 15.0  | 150  | 1.1673          | 0.5625   | 0.5707    | 0.5511 |
| 0.6168        | 16.0  | 160  | 1.2981          | 0.475    | 0.5388    | 0.4846 |
| 0.5512        | 17.0  | 170  | 1.2624          | 0.575    | 0.6110    | 0.5726 |
| 0.5532        | 18.0  | 180  | 1.2392          | 0.6188   | 0.6229    | 0.6163 |
| 0.4931        | 19.0  | 190  | 1.4012          | 0.5375   | 0.5542    | 0.5277 |
| 0.4919        | 20.0  | 200  | 1.2323          | 0.5813   | 0.5825    | 0.5758 |
| 0.4243        | 21.0  | 210  | 1.3046          | 0.5875   | 0.5967    | 0.5750 |
| 0.3971        | 22.0  | 220  | 1.3169          | 0.5687   | 0.5812    | 0.5610 |
| 0.3534        | 23.0  | 230  | 1.4052          | 0.5625   | 0.6240    | 0.5527 |
| 0.3456        | 24.0  | 240  | 1.3372          | 0.5875   | 0.5998    | 0.5838 |
| 0.3381        | 25.0  | 250  | 1.4000          | 0.55     | 0.5589    | 0.5468 |
| 0.3786        | 26.0  | 260  | 1.3531          | 0.5687   | 0.6269    | 0.5764 |
| 0.3614        | 27.0  | 270  | 1.3696          | 0.5687   | 0.6019    | 0.5704 |
| 0.312         | 28.0  | 280  | 1.3523          | 0.6125   | 0.6351    | 0.6148 |
| 0.2643        | 29.0  | 290  | 1.4510          | 0.5813   | 0.6286    | 0.5825 |
| 0.3553        | 30.0  | 300  | 1.5255          | 0.6062   | 0.6560    | 0.6113 |
| 0.2807        | 31.0  | 310  | 1.5901          | 0.5813   | 0.5921    | 0.5655 |
| 0.3252        | 32.0  | 320  | 1.5669          | 0.575    | 0.5764    | 0.5639 |
| 0.3796        | 33.0  | 330  | 1.6251          | 0.5375   | 0.5776    | 0.5431 |
| 0.2635        | 34.0  | 340  | 1.7397          | 0.4938   | 0.5513    | 0.4944 |
| 0.2583        | 35.0  | 350  | 1.4806          | 0.6      | 0.6566    | 0.6099 |
| 0.3006        | 36.0  | 360  | 1.4808          | 0.5813   | 0.6310    | 0.5863 |
| 0.3082        | 37.0  | 370  | 1.7077          | 0.5188   | 0.5680    | 0.5156 |
| 0.3346        | 38.0  | 380  | 1.6861          | 0.575    | 0.6725    | 0.5638 |
| 0.291         | 39.0  | 390  | 1.5484          | 0.5625   | 0.5631    | 0.5535 |
| 0.2313        | 40.0  | 400  | 1.4933          | 0.5563   | 0.5564    | 0.5526 |
| 0.2163        | 41.0  | 410  | 1.5836          | 0.5938   | 0.6046    | 0.5929 |
| 0.2201        | 42.0  | 420  | 1.6363          | 0.5687   | 0.5954    | 0.5672 |
| 0.2077        | 43.0  | 430  | 1.6746          | 0.5687   | 0.5623    | 0.5622 |


### Framework versions

- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3