dennistrujillo
commited on
Commit
•
beef824
1
Parent(s):
769a90a
added model.py
Browse files
model.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
def model_init(m):
|
4 |
+
if isinstance(m, torch.nn.Conv2d) or isinstance(m, torch.nn.Linear):
|
5 |
+
torch.nn.init.xavier_uniform_(m.weight)
|
6 |
+
torch.nn.init.zeros_(m.bias)
|
7 |
+
|
8 |
+
class NLB(torch.nn.Module):
|
9 |
+
def __init__(self, in_ch, relu_a=0.01):
|
10 |
+
self.inter_ch = torch.div(in_ch, 2, rounding_mode='floor').item()
|
11 |
+
super().__init__()
|
12 |
+
self.theta_layer = torch.nn.Conv2d(in_channels=in_ch, out_channels=self.inter_ch, \
|
13 |
+
kernel_size=1, padding=0)
|
14 |
+
self.phi_layer = torch.nn.Conv2d(in_channels=in_ch, out_channels=self.inter_ch, \
|
15 |
+
kernel_size=1, padding=0)
|
16 |
+
self.g_layer = torch.nn.Conv2d(in_channels=in_ch, out_channels=self.inter_ch, \
|
17 |
+
kernel_size=1, padding=0)
|
18 |
+
self.atten_act = torch.nn.Softmax(dim=-1)
|
19 |
+
self.out_cnn = torch.nn.Conv2d(in_channels=self.inter_ch, out_channels=in_ch, \
|
20 |
+
kernel_size=1, padding=0)
|
21 |
+
|
22 |
+
def forward(self, x):
|
23 |
+
mbsz, _, h, w = x.size()
|
24 |
+
|
25 |
+
theta = self.theta_layer(x).view(mbsz, self.inter_ch, -1).permute(0, 2, 1)
|
26 |
+
phi = self.phi_layer(x).view(mbsz, self.inter_ch, -1)
|
27 |
+
g = self.g_layer(x).view(mbsz, self.inter_ch, -1).permute(0, 2, 1)
|
28 |
+
|
29 |
+
theta_phi = self.atten_act(torch.matmul(theta, phi))
|
30 |
+
|
31 |
+
theta_phi_g = torch.matmul(theta_phi, g).permute(0, 2, 1).view(mbsz, self.inter_ch, h, w)
|
32 |
+
|
33 |
+
_out_tmp = self.out_cnn(theta_phi_g)
|
34 |
+
_out_tmp = torch.add(_out_tmp, x)
|
35 |
+
|
36 |
+
return _out_tmp
|
37 |
+
|
38 |
+
|
39 |
+
class BraggNN(torch.nn.Module):
|
40 |
+
def __init__(self, imgsz, fcsz=(64, 32, 16, 8)):
|
41 |
+
super().__init__()
|
42 |
+
self.cnn_ops = []
|
43 |
+
cnn_out_chs = (64, 32, 8)
|
44 |
+
cnn_in_chs = (1, ) + cnn_out_chs[:-1]
|
45 |
+
fsz = imgsz
|
46 |
+
for ic, oc, in zip(cnn_in_chs, cnn_out_chs):
|
47 |
+
self.cnn_ops += [
|
48 |
+
torch.nn.Conv2d(in_channels=ic, out_channels=oc, kernel_size=3, \
|
49 |
+
stride=1, padding=0),
|
50 |
+
torch.nn.LeakyReLU(negative_slope=0.01),
|
51 |
+
]
|
52 |
+
fsz -= 2
|
53 |
+
self.nlb = NLB(in_ch=cnn_out_chs[0])
|
54 |
+
self.dense_ops = []
|
55 |
+
dense_in_chs = (fsz * fsz * cnn_out_chs[-1], ) + fcsz[:-1]
|
56 |
+
for ic, oc in zip(dense_in_chs, fcsz):
|
57 |
+
self.dense_ops += [
|
58 |
+
torch.nn.Linear(ic, oc),
|
59 |
+
torch.nn.LeakyReLU(negative_slope=0.01),
|
60 |
+
]
|
61 |
+
# output layer
|
62 |
+
self.dense_ops += [torch.nn.Linear(fcsz[-1], 2), ]
|
63 |
+
|
64 |
+
self.cnn_layers = torch.nn.Sequential(*self.cnn_ops)
|
65 |
+
self.dense_layers = torch.nn.Sequential(*self.dense_ops)
|
66 |
+
|
67 |
+
def forward(self, x):
|
68 |
+
_out = x
|
69 |
+
for layer in self.cnn_layers[:1]:
|
70 |
+
_out = layer(_out)
|
71 |
+
|
72 |
+
_out = self.nlb(_out)
|
73 |
+
|
74 |
+
for layer in self.cnn_layers[1:]:
|
75 |
+
_out = layer(_out)
|
76 |
+
|
77 |
+
_out = _out.flatten(start_dim=1)
|
78 |
+
for layer in self.dense_layers:
|
79 |
+
_out = layer(_out)
|
80 |
+
|
81 |
+
return _out
|