from model import model_init, BraggNN from torch.utils.data import DataLoader from dataset import PatchWiseDataset import torch, argparse, os from util import str2bool, str2tuple, s2ituple from plot import plot_loss, plot_error import numpy as np parser = argparse.ArgumentParser(description='Bragg peak finding for HEDM.') parser.add_argument('-p_file', type=str, default="debug", help='frame/patch metadata h5 file') parser.add_argument('-f_file', type=str, default="debug", help='frame/patch h5 file') parser.add_argument('-m_file', type=str, help='model state_dict file') parser.add_argument('-psz', type=int, default=15, help='working patch size') parser.add_argument('-fcsz', type=s2ituple, default='16_8_4_2', help='size of dense layers') parser.add_argument('-expName',type=str, default="debug", help='Experiment name') args, unparsed = parser.parse_known_args() def main(args): device = torch.device("cpu")#"cuda" if torch.cuda.is_available() else "cpu") #model = BraggNN(imgsz=args.psz, fcsz=args.fcsz) if device.type == 'cpu': model=torch.load(args.m_file,map_location=torch.device('cpu')) else: model=torch.load(args.m_file) model.eval() ds_valid = PatchWiseDataset(psz=args.psz, rnd_shift=0, use='validation', pfile=args.p_file, ffile=args.f_file) dl_valid = DataLoader(dataset=ds_valid, batch_size=len(ds_valid), shuffle=True, \ num_workers=4, drop_last=False, pin_memory=True) mse=0.0 with torch.no_grad(): for i, (inputs, labels) in enumerate(dl_valid): inputs = inputs.to(device) y_pred = model(inputs) y_pred = y_pred.cpu().numpy() labels = labels.cpu().numpy() plot_error(y_pred,labels,args.expName) mse += np.power(y_pred[:,0] - labels[:,0],2) + np.power(y_pred[:,1] - labels[:,1],2) if __name__ == "__main__": main(args)