--- license: mit ---
![Build Status](https://github.com/DevoLearn/devolearn/actions/workflows/main.yml/badge.svg) [![codecov](https://codecov.io/gh/DevoLearn/devolearn/branch/master/graph/badge.svg?token=F8AJZSGWXJ)](https://codecov.io/gh/DevoLearn/devolearn) [![](https://img.shields.io/github/issues/DevoLearn/devolearn)](https://github.com/DevoLearn/devolearn/issues) [![](https://img.shields.io/github/contributors/DevoLearn/devolearn)](https://github.com/DevoLearn/devolearn/graphs/contributors) [![](https://img.shields.io/github/last-commit/DevoLearn/devolearn)](https://github.com/DevoLearn/devolearn/commits/master) [![](https://img.shields.io/twitter/url?color=green&label=Slack&logo=slack&logoColor=blue&style=social&url=https%3A%2F%2Fopenworm.slack.com%2Farchives%2FCMVFU7Q4W)](https://openworm.slack.com/archives/CMVFU7Q4W) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/DevoLearn/data-science-demos/blob/master/devolearn_docs/devolearn_quickstart.ipynb) ## Contents * [Example notebooks](https://github.com/DevoLearn/devolearn#example-notebooks) * [Segmenting the C. elegans embryo](https://github.com/DevoLearn/devolearn#segmenting-the-c-elegans-embryo) * [Generating synthetic images of embryos with a GAN](https://github.com/DevoLearn/devolearn#generating-synthetic-images-of-embryos-with-a-pre-trained-gan) * [Predicting populations of cells within the C. elegans embryo](https://github.com/DevoLearn/devolearn#predicting-populations-of-cells-within-the-c-elegans-embryo) * [Contributing to DevoLearn](https://github.com/DevoLearn/devolearn/blob/master/.github/contributing.md#contributing-to-devolearn) * [Links to datasets](https://github.com/DevoLearn/devolearn#links-to-datasets) * [Contact us](https://github.com/DevoLearn/devolearn#authorsmaintainers) ### Installation ```python pip install devolearn ``` ### Example notebooks
* [Extracting centroid maps and making 3d centroid models](https://nbviewer.jupyter.org/github/DevoLearn/data-science-demos/blob/master/Networks/experiments_with_devolearn_node_maps.ipynb) ### Segmenting the Cell Membrane in C. elegans embryo
* Importing the model ```python from devolearn import cell_membrane_segmentor segmentor = cell_membrane_segmentor() ``` * Running the model on an image and viewing the prediction ```python seg_pred = segmentor.predict(image_path = "sample_data/images/seg_sample.jpg") plt.imshow(seg_pred) plt.show() ``` * Running the model on a video and saving the predictions into a folder ```python filenames = segmentor.predict_from_video(video_path = "sample_data/videos/seg_sample.mov", centroid_mode = False, save_folder = "preds") ``` * Finding the centroids of the segmented features ```python seg_pred, centroids = segmentor.predict(image_path = "sample_data/images/seg_sample.jpg", centroid_mode = True) plt.imshow(seg_pred) plt.show() ``` * Saving the centroids from each frame into a CSV ```python df = segmentor.predict_from_video(video_path = "sample_data/videos/seg_sample.mov", centroid_mode = True, save_folder = "preds") df.to_csv("centroids.csv") ``` ### Segmenting the Cell Nucleus in C. elegans embryo
* Importing the model ```python from devolearn import cell_nucleus_segmentor segmentor = cell_nucleus_segmentor() ``` * Running the model on an image and viewing the prediction ```python seg_pred = segmentor.predict(image_path = "sample_data/images/nucleus_seg_sample.jpg") plt.imshow(seg_pred) plt.show() ``` ### Generating synthetic images of embryos with a Pre-trained GAN
* Importing the model ```python from devolearn import Generator, embryo_generator_model generator = embryo_generator_model() ``` * Generating a picture and viewing it with [matplotlib](https://matplotlib.org/) ```python gen_image = generator.generate() plt.imshow(gen_image) plt.show() ``` * Generating n images and saving them into `foldername` with a custom size ```python generator.generate_n_images(n = 5, foldername= "generated_images", image_size= (700,500)) ``` --- ### Predicting populations of cells within the C. elegans embryo
* Importing the population model for inferences ```python from devolearn import lineage_population_model ``` * Loading a model instance to be used to estimate lineage populations of embryos from videos/photos. ```python model = lineage_population_model(device = "cpu") ``` * Making a prediction from an image ```python print(model.predict(image_path = "sample_data/images/embryo_sample.png")) ``` * Making predictions from a video and saving the predictions into a CSV file ```python results = model.predict_from_video(video_path = "sample_data/videos/embryo_timelapse.mov", save_csv = True, csv_name = "video_preds.csv", ignore_first_n_frames= 10, ignore_last_n_frames= 10, postprocess = False) ``` * Plotting the model's predictions from a video ```python plot = model.create_population_plot_from_video(video_path = "sample_data/videos/embryo_timelapse.mov", save_plot= True, plot_name= "plot.png", ignore_last_n_frames= 0, postprocess = False) plot.show() ``` ## Links to Datasets | **Model** | **Data source** | |-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Segmenting the cell membrane in C. elegans embryo | [3DMMS: robust 3D Membrane Morphological Segmentation of C. elegans embryo](https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2720-x#Abs1/) | | Segmenting the nucleus in C. elegans embryo | [C. elegans Cell-Tracking-Challenge dataset](http://celltrackingchallenge.net/3d-datasets/) | Cell lineage population prediction + embryo GAN | [EPIC dataset](https://epic.gs.washington.edu/) ## Links to HuggingFace spaces | **Model** | **Huggingface** | |-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Segmenting the cell membrane in C. elegans embryo | [Cell Membrane segmentor](https://huggingface.co/spaces/devoworm-group/membrane_segmentation) | | Segmenting the nucleus in C. elegans embryo | [C. elegans Nucleus segmentor](https://huggingface.co/spaces/devoworm-group/nucleus_segmentor) | Cell lineage population prediction | [Lineage population](https://huggingface.co/spaces/devoworm-group/Lineage_Population) ## Authors/maintainers: * [Mayukh Deb](https://twitter.com/mayukh091) * [Ujjwal Singh](https://twitter.com/ujjjwalll) * [Dr. Bradly Alicea](https://twitter.com/balicea1) Feel free to join our [Slack workspace](https://openworm.slack.com/archives/CMVFU7Q4W)!