dfalvearg commited on
Commit
57b054a
·
1 Parent(s): 0d760ad

Upload PPO LunarLander-v2 trained agent dfalvearg

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 244.02 +/- 16.97
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbf0f7277f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbf0f727880>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbf0f727910>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbf0f7279a0>", "_build": "<function ActorCriticPolicy._build at 0x7fbf0f727a30>", "forward": "<function ActorCriticPolicy.forward at 0x7fbf0f727ac0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fbf0f727b50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbf0f727be0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbf0f727c70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbf0f727d00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbf0f727d90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbf0f727e20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fbf1776eb80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690793827589560414, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAArMxD7U+fw+unwcvdruWr5aS749Fc9tvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGyafO+qR2eMAWyUTTsBjAF0lEdAm7nxky1uznV9lChoBkdAbLPkp7TlT2gHTX8BaAhHQJu8cssg+yJ1fZQoaAZHQHEKCSNfgJloB00lAWgIR0CbvhikO7QLdX2UKGgGR0BxakOOKfnPaAdNUAFoCEdAm8ERZuAI6nV9lChoBkdAcABxz7uUlmgHTUIBaAhHQJvC8w35vcd1fZQoaAZHQGzknAZbY9RoB00rAWgIR0CbxLSDRMN+dX2UKGgGRz/9B6F/QSi/aAdNCQFoCEdAm8ZLhvR7Z3V9lChoBkdAcNRVwxWT5mgHTSgBaAhHQJvJJYLb5/N1fZQoaAZHQG/nwkona39oB01oAWgIR0Cbyy1twaR7dX2UKGgGR0BvCLJCBwuNaAdNNwFoCEdAm8zxpUPxx3V9lChoBkdAcMKQbMottmgHTRECaAhHQJvRH1M/QjV1fZQoaAZHQHFxHQD3dsVoB003AWgIR0Cb0uvP1L8KdX2UKGgGR8A0Qod+5OJtaAdL+mgIR0Cb1FlSS/0vdX2UKGgGR0Bt0c0xdpqRaAdNZwFoCEdAm9eIeo1k2HV9lChoBkdAcgXdzXBgu2gHTS8BaAhHQJvZQUqQRwt1fZQoaAZHQHJI6IrOJLxoB01ZAWgIR0Cb2zjgQ6IWdX2UKGgGR0BwFCyt3fQ8aAdNHwFoCEdAm94JVfeDWnV9lChoBkdAcJVF2mpEQWgHTVYBaAhHQJvgDCcf/3p1fZQoaAZHQDj/SofjjrBoB00HAWgIR0Cb4ZEofCAMdX2UKGgGR0BvTF3yI55raAdNRgFoCEdAm+VH5aePJnV9lChoBkdAUeJtk4FRpGgHS9doCEdAm+bwf6oES3V9lChoBkdAbYKqtozvZ2gHTVYBaAhHQJvpjg88s+V1fZQoaAZHQDpdARkEs8RoB0vxaAhHQJvrZmXgLql1fZQoaAZHQE4UORT0g8toB0v9aAhHQJvuqk/KQq91fZQoaAZHQHD96Pjn3cpoB00jAWgIR0Cb8Fg9/z8QdX2UKGgGR0ByTXJW/8EWaAdNMAFoCEdAm/IJoCdSVHV9lChoBkdAcGf3bEgnt2gHTTIBaAhHQJvz5MQEpy91fZQoaAZHQHGWn9WIXTFoB00zAWgIR0Cb9sOzY287dX2UKGgGR0Br99P557gLaAdNPgFoCEdAm/ilWXC0nnV9lChoBkdAbz4nDziCKGgHTSQBaAhHQJv6S+fywwF1fZQoaAZHQG3Osuez2OBoB008AWgIR0Cb/S0WuX/pdX2UKGgGR0BuK0vIwM6SaAdNVwFoCEdAm/8ZsCT2WnV9lChoBkdAbMCQzUI9kmgHTWABaAhHQJwBL2zv7WN1fZQoaAZHQGza3uNPxhFoB00vAWgIR0CcA/pS75EddX2UKGgGR0BxZZ+XqqwRaAdNSQFoCEdAnAXWt2cJ+nV9lChoBkdAbzM/VRUFS2gHTU4BaAhHQJwHuArhBJJ1fZQoaAZHwEEMZHd43WFoB0v/aAhHQJwKOISDh991fZQoaAZHQGuzWki2UjdoB00+AWgIR0CcDBd9Ujs2dX2UKGgGR0BwVcEq2BrfaAdNNAFoCEdAnA3zB68g6nV9lChoBkdAcUIaWHDaXmgHTUgBaAhHQJwP8PnSv1V1fZQoaAZHQEzvS0jTrmhoB0voaAhHQJwSVjqfOD91fZQoaAZHQEVYEQGwA2hoB00nAWgIR0CcFAwjdHlPdX2UKGgGR0AuzQXQ+lj3aAdNDgFoCEdAnBWTq8lHBnV9lChoBkdARw8dBBzFM2gHS7VoCEdAnBbnIU8FIXV9lChoBkfAFrACW/rSmmgHTREBaAhHQJwaehXbM5h1fZQoaAZHQHEzWMsH0K9oB006AWgIR0CcHPh24d6tdX2UKGgGR8ACecnVoYelaAdLx2gIR0CcHo1KXfIkdX2UKGgGR0ByL1nHvMKUaAdNXAFoCEdAnCKJCWu5jHV9lChoBkdAcVYeRgZ0jmgHTR8BaAhHQJwkK8nNPgx1fZQoaAZHQHDd4TTOPeZoB01tAWgIR0CcJkc3VCokdX2UKGgGR0Bw5T0J4SpSaAdNpgFoCEdAnCncynDR+nV9lChoBkdAcJPs189fTmgHTS8BaAhHQJwro43m3fB1fZQoaAZHQG/qHJ1aGHpoB00NAWgIR0CcLTvze40/dX2UKGgGR0Bv2E4vN/vwaAdNJwFoCEdAnC7qXfIjnnV9lChoBkdAcYHzoUzsQmgHTRcBaAhHQJwxqKoAGSp1fZQoaAZHwETKPH1e0HBoB0vmaAhHQJwy8u27Wd51fZQoaAZHQEMzt52Qnx9oB0vWaAhHQJw0LoicG1R1fZQoaAZHQG6YAIY3vQZoB00/AWgIR0CcNhrYGt6pdX2UKGgGR0Bveo3eenQ6aAdNHgFoCEdAnDj6GlANX3V9lChoBkdAYCXLh73PA2gHTegDaAhHQJw//wPRRdh1fZQoaAZHQHAKkVFhG6RoB00LAmgIR0CcQwxCY1HfdX2UKGgGR0BvLwX2ugYhaAdNGwFoCEdAnESngLqlg3V9lChoBkdAbbGDkELYw2gHTTUBaAhHQJxHehg3Lmp1fZQoaAZHQHDJ0IToMa1oB01IAWgIR0CcSYVoHs1LdX2UKGgGR0Byb4QGwA2iaAdNGwFoCEdAnEu2Xsw+MnV9lChoBkdAO1xp+MIeHWgHS/FoCEdAnE8UuDjBEnV9lChoBkdAQPtcjZ+QVGgHS+hoCEdAnFDhk3CKrXV9lChoBkdAcFTapgkTpWgHTTsBaAhHQJxTjFNtZV51fZQoaAZHQHBbnMQmNR5oB01XAWgIR0CcVY8/lhgFdX2UKGgGR0BwW9tHhCMQaAdNAgFoCEdAnFhaU7jkuHV9lChoBkdAcW6dxAB1cWgHTZsBaAhHQJxatkZrHlx1fZQoaAZHQHCDLUTcqONoB00+AWgIR0CcXIj2SMcZdX2UKGgGR0BwYTG0eEIxaAdNfgFoCEdAnF/knG828HV9lChoBkdATTP6qKgqVmgHS+doCEdAnGE9eMQ2/HV9lChoBkdAcZOuzQeFL2gHTVQBaAhHQJxjL3QD3dt1fZQoaAZHQCJ7gl4TsY5oB00CAWgIR0CcZb4vvjOtdX2UKGgGR0BxArTF2mpEaAdNLQFoCEdAnGeNI9TxXnV9lChoBkdAcExkLx7RfGgHTQQBaAhHQJxpHuYx+KF1fZQoaAZHQC9GQp4KQaJoB0vCaAhHQJxqMYwZflZ1fZQoaAZHQG8dXf642CNoB03wAWgIR0CcblAqd6LPdX2UKGgGR0Buvh4GD+R6aAdNMQFoCEdAnHAPZAY51nV9lChoBkdAb4m+qzZ6EGgHTVwBaAhHQJxyCwPiDNB1fZQoaAZHQDkjbGm1pkBoB0vcaAhHQJx0b4k/r0J1fZQoaAZHQFwPanJkoWpoB03oA2gIR0Cce20NSZSfdX2UKGgGR0BwPw7W/ag3aAdNOgFoCEdAnH3VqSHM2XV9lChoBkdAccx1UlzEJmgHTXMBaAhHQJyAnegte2N1fZQoaAZHQGwxahYeT3ZoB00/AWgIR0CchJ6GgzxgdX2UKGgGR0BuQsxoIv8JaAdNGgFoCEdAnIa9nbqQinV9lChoBkdAcNFbMX7+DWgHTS0BaAhHQJyIdsGgSOB1fZQoaAZHQCwOfRNRFZxoB0v8aAhHQJyJ3gBLf1p1fZQoaAZHQE2Z1K5CngpoB0v0aAhHQJyMY1O0svt1fZQoaAZHQG7e9du5z5poB01NAWgIR0CcjlH4XXRPdX2UKGgGR0BxXwPwuuifaAdNKwFoCEdAnJASOFQEZHV9lChoBkfAFAWeHzpX62gHS/doCEdAnJKTiOvMbHV9lChoBkdAbmdye7L+xWgHTbgBaAhHQJyVNCMPz4F1fZQoaAZHQG5xbrkbPyFoB01eAWgIR0Ccl0R5C4SZdX2UKGgGR0BjFQ1gpjMFaAdN6ANoCEdAnJ5czZYgaHV9lChoBkdAcWg9hZyMk2gHTboBaAhHQJyiE12q1gJ1fZQoaAZHQHJ1SJoCdSVoB00+AWgIR0Cco+/jbSJCdX2UKGgGR0BsPFn003wTaAdNMAFoCEdAnKWzE74i5nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVGQMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoOooQYQPI6AEjdA40caf/yMquBYwDaW5jlIoRg+ZTxFEIonrcQTMAcUhE/AB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oQYY7tIfQFg3Lv6NURhAWjA4wDaW5jlIoRo2iASTIPz6ow9+TCSyDr+wB1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpRKcAAgcXVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a3b1f5e9d01f423fd14cc0683f807bf1ed002673050a0cd5ad43ecac935a4a0
3
+ size 146555
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbf0f7277f0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbf0f727880>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbf0f727910>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbf0f7279a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fbf0f727a30>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fbf0f727ac0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fbf0f727b50>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbf0f727be0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fbf0f727c70>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbf0f727d00>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbf0f727d90>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbf0f727e20>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fbf1776eb80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1000448,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1690793827589560414,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAArMxD7U+fw+unwcvdruWr5aS749Fc9tvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.00044800000000000395,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVMgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGyafO+qR2eMAWyUTTsBjAF0lEdAm7nxky1uznV9lChoBkdAbLPkp7TlT2gHTX8BaAhHQJu8cssg+yJ1fZQoaAZHQHEKCSNfgJloB00lAWgIR0CbvhikO7QLdX2UKGgGR0BxakOOKfnPaAdNUAFoCEdAm8ERZuAI6nV9lChoBkdAcABxz7uUlmgHTUIBaAhHQJvC8w35vcd1fZQoaAZHQGzknAZbY9RoB00rAWgIR0CbxLSDRMN+dX2UKGgGRz/9B6F/QSi/aAdNCQFoCEdAm8ZLhvR7Z3V9lChoBkdAcNRVwxWT5mgHTSgBaAhHQJvJJYLb5/N1fZQoaAZHQG/nwkona39oB01oAWgIR0Cbyy1twaR7dX2UKGgGR0BvCLJCBwuNaAdNNwFoCEdAm8zxpUPxx3V9lChoBkdAcMKQbMottmgHTRECaAhHQJvRH1M/QjV1fZQoaAZHQHFxHQD3dsVoB003AWgIR0Cb0uvP1L8KdX2UKGgGR8A0Qod+5OJtaAdL+mgIR0Cb1FlSS/0vdX2UKGgGR0Bt0c0xdpqRaAdNZwFoCEdAm9eIeo1k2HV9lChoBkdAcgXdzXBgu2gHTS8BaAhHQJvZQUqQRwt1fZQoaAZHQHJI6IrOJLxoB01ZAWgIR0Cb2zjgQ6IWdX2UKGgGR0BwFCyt3fQ8aAdNHwFoCEdAm94JVfeDWnV9lChoBkdAcJVF2mpEQWgHTVYBaAhHQJvgDCcf/3p1fZQoaAZHQDj/SofjjrBoB00HAWgIR0Cb4ZEofCAMdX2UKGgGR0BvTF3yI55raAdNRgFoCEdAm+VH5aePJnV9lChoBkdAUeJtk4FRpGgHS9doCEdAm+bwf6oES3V9lChoBkdAbYKqtozvZ2gHTVYBaAhHQJvpjg88s+V1fZQoaAZHQDpdARkEs8RoB0vxaAhHQJvrZmXgLql1fZQoaAZHQE4UORT0g8toB0v9aAhHQJvuqk/KQq91fZQoaAZHQHD96Pjn3cpoB00jAWgIR0Cb8Fg9/z8QdX2UKGgGR0ByTXJW/8EWaAdNMAFoCEdAm/IJoCdSVHV9lChoBkdAcGf3bEgnt2gHTTIBaAhHQJvz5MQEpy91fZQoaAZHQHGWn9WIXTFoB00zAWgIR0Cb9sOzY287dX2UKGgGR0Br99P557gLaAdNPgFoCEdAm/ilWXC0nnV9lChoBkdAbz4nDziCKGgHTSQBaAhHQJv6S+fywwF1fZQoaAZHQG3Osuez2OBoB008AWgIR0Cb/S0WuX/pdX2UKGgGR0BuK0vIwM6SaAdNVwFoCEdAm/8ZsCT2WnV9lChoBkdAbMCQzUI9kmgHTWABaAhHQJwBL2zv7WN1fZQoaAZHQGza3uNPxhFoB00vAWgIR0CcA/pS75EddX2UKGgGR0BxZZ+XqqwRaAdNSQFoCEdAnAXWt2cJ+nV9lChoBkdAbzM/VRUFS2gHTU4BaAhHQJwHuArhBJJ1fZQoaAZHwEEMZHd43WFoB0v/aAhHQJwKOISDh991fZQoaAZHQGuzWki2UjdoB00+AWgIR0CcDBd9Ujs2dX2UKGgGR0BwVcEq2BrfaAdNNAFoCEdAnA3zB68g6nV9lChoBkdAcUIaWHDaXmgHTUgBaAhHQJwP8PnSv1V1fZQoaAZHQEzvS0jTrmhoB0voaAhHQJwSVjqfOD91fZQoaAZHQEVYEQGwA2hoB00nAWgIR0CcFAwjdHlPdX2UKGgGR0AuzQXQ+lj3aAdNDgFoCEdAnBWTq8lHBnV9lChoBkdARw8dBBzFM2gHS7VoCEdAnBbnIU8FIXV9lChoBkfAFrACW/rSmmgHTREBaAhHQJwaehXbM5h1fZQoaAZHQHEzWMsH0K9oB006AWgIR0CcHPh24d6tdX2UKGgGR8ACecnVoYelaAdLx2gIR0CcHo1KXfIkdX2UKGgGR0ByL1nHvMKUaAdNXAFoCEdAnCKJCWu5jHV9lChoBkdAcVYeRgZ0jmgHTR8BaAhHQJwkK8nNPgx1fZQoaAZHQHDd4TTOPeZoB01tAWgIR0CcJkc3VCokdX2UKGgGR0Bw5T0J4SpSaAdNpgFoCEdAnCncynDR+nV9lChoBkdAcJPs189fTmgHTS8BaAhHQJwro43m3fB1fZQoaAZHQG/qHJ1aGHpoB00NAWgIR0CcLTvze40/dX2UKGgGR0Bv2E4vN/vwaAdNJwFoCEdAnC7qXfIjnnV9lChoBkdAcYHzoUzsQmgHTRcBaAhHQJwxqKoAGSp1fZQoaAZHwETKPH1e0HBoB0vmaAhHQJwy8u27Wd51fZQoaAZHQEMzt52Qnx9oB0vWaAhHQJw0LoicG1R1fZQoaAZHQG6YAIY3vQZoB00/AWgIR0CcNhrYGt6pdX2UKGgGR0Bveo3eenQ6aAdNHgFoCEdAnDj6GlANX3V9lChoBkdAYCXLh73PA2gHTegDaAhHQJw//wPRRdh1fZQoaAZHQHAKkVFhG6RoB00LAmgIR0CcQwxCY1HfdX2UKGgGR0BvLwX2ugYhaAdNGwFoCEdAnESngLqlg3V9lChoBkdAbbGDkELYw2gHTTUBaAhHQJxHehg3Lmp1fZQoaAZHQHDJ0IToMa1oB01IAWgIR0CcSYVoHs1LdX2UKGgGR0Byb4QGwA2iaAdNGwFoCEdAnEu2Xsw+MnV9lChoBkdAO1xp+MIeHWgHS/FoCEdAnE8UuDjBEnV9lChoBkdAQPtcjZ+QVGgHS+hoCEdAnFDhk3CKrXV9lChoBkdAcFTapgkTpWgHTTsBaAhHQJxTjFNtZV51fZQoaAZHQHBbnMQmNR5oB01XAWgIR0CcVY8/lhgFdX2UKGgGR0BwW9tHhCMQaAdNAgFoCEdAnFhaU7jkuHV9lChoBkdAcW6dxAB1cWgHTZsBaAhHQJxatkZrHlx1fZQoaAZHQHCDLUTcqONoB00+AWgIR0CcXIj2SMcZdX2UKGgGR0BwYTG0eEIxaAdNfgFoCEdAnF/knG828HV9lChoBkdATTP6qKgqVmgHS+doCEdAnGE9eMQ2/HV9lChoBkdAcZOuzQeFL2gHTVQBaAhHQJxjL3QD3dt1fZQoaAZHQCJ7gl4TsY5oB00CAWgIR0CcZb4vvjOtdX2UKGgGR0BxArTF2mpEaAdNLQFoCEdAnGeNI9TxXnV9lChoBkdAcExkLx7RfGgHTQQBaAhHQJxpHuYx+KF1fZQoaAZHQC9GQp4KQaJoB0vCaAhHQJxqMYwZflZ1fZQoaAZHQG8dXf642CNoB03wAWgIR0CcblAqd6LPdX2UKGgGR0Buvh4GD+R6aAdNMQFoCEdAnHAPZAY51nV9lChoBkdAb4m+qzZ6EGgHTVwBaAhHQJxyCwPiDNB1fZQoaAZHQDkjbGm1pkBoB0vcaAhHQJx0b4k/r0J1fZQoaAZHQFwPanJkoWpoB03oA2gIR0Cce20NSZSfdX2UKGgGR0BwPw7W/ag3aAdNOgFoCEdAnH3VqSHM2XV9lChoBkdAccx1UlzEJmgHTXMBaAhHQJyAnegte2N1fZQoaAZHQGwxahYeT3ZoB00/AWgIR0CchJ6GgzxgdX2UKGgGR0BuQsxoIv8JaAdNGgFoCEdAnIa9nbqQinV9lChoBkdAcNFbMX7+DWgHTS0BaAhHQJyIdsGgSOB1fZQoaAZHQCwOfRNRFZxoB0v8aAhHQJyJ3gBLf1p1fZQoaAZHQE2Z1K5CngpoB0v0aAhHQJyMY1O0svt1fZQoaAZHQG7e9du5z5poB01NAWgIR0CcjlH4XXRPdX2UKGgGR0BxXwPwuuifaAdNKwFoCEdAnJASOFQEZHV9lChoBkfAFAWeHzpX62gHS/doCEdAnJKTiOvMbHV9lChoBkdAbmdye7L+xWgHTbgBaAhHQJyVNCMPz4F1fZQoaAZHQG5xbrkbPyFoB01eAWgIR0Ccl0R5C4SZdX2UKGgGR0BjFQ1gpjMFaAdN6ANoCEdAnJ5czZYgaHV9lChoBkdAcWg9hZyMk2gHTboBaAhHQJyiE12q1gJ1fZQoaAZHQHJ1SJoCdSVoB00+AWgIR0Cco+/jbSJCdX2UKGgGR0BsPFn003wTaAdNMAFoCEdAnKWzE74i5nVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 3908,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVGQMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoOooQYQPI6AEjdA40caf/yMquBYwDaW5jlIoRg+ZTxFEIonrcQTMAcUhE/AB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": "Generator(PCG64)"
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWVgQEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oQYY7tIfQFg3Lv6NURhAWjA4wDaW5jlIoRo2iASTIPz6ow9+TCSyDr+wB1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpRKcAAgcXVidWIu",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": "Generator(PCG64)"
78
+ },
79
+ "n_envs": 1,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e633f0bc626e155d5e52fee90d460813bd697538d5e7b8dd127c315dbd04cbc6
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9669ed71d56180dc2b33a138abdd4d475c0de9058afd3ef6fbb6176081064b47
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.6
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (171 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 244.01629209481743, "std_reward": 16.966281122735047, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-31T09:52:09.936346"}