{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x787eee9b35b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x787eee9b3640>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x787eee9b36d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x787eee9b3760>", "_build": "<function ActorCriticPolicy._build at 0x787eee9b37f0>", "forward": "<function ActorCriticPolicy.forward at 0x787eee9b3880>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x787eee9b3910>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x787eee9b39a0>", "_predict": "<function ActorCriticPolicy._predict at 0x787eee9b3a30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x787eee9b3ac0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x787eee9b3b50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x787eee9b3be0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x787eee9b8740>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709977746012006357, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANqHGz6Drgy8TpKFOyp5yLkea2m9ckGnugAAAAAAAIA/Ztz/vK5tjrouxBG1KkIksKfxgbp2QGE0AACAPwAAgD9zFcI91AaQPV4wJryA4Bq+q2YUPZ+eRL0AAAAAAAAAAHVblL4VTJw/yuDSvgaHur6O3rS+VzOHOwAAAAAAAAAAZiavO/KUJj7Os2097RxHvkGDkD0jODK9AAAAAAAAAACmGpa+mpdsP45Utr6Z96C+l+K8vjiK170AAAAAAAAAADpoC76xY5U/7V9SvgQvvL5o1Ci+3bkGvQAAAAAAAAAA08dOPkn9ST86skW+2ceXvh980rye0oK9AAAAAAAAAABmVP8873YpPXffJTzXnki+Kbt6vdW/uDwAAAAAAAAAABrwoD3r28Q9U/xvO/V9Ub6F6pq8I8hLvQAAAAAAAAAAxmhBPrZeeLw1NAs7PTJCuTzD1r2XyBy6AACAPwAAgD9zjY09/wxWP/NIZ70fu6m+0jvtPGm/hr0AAAAAAAAAAGbZwL3hnoW6Cy9hOsTvVjX62ws7ii2DuQAAgD8AAAAA02GHPkq8tj9JoSw/9fDbvoIsxj6bN2Q+AAAAAAAAAAANaZ+9HBO2P2an5b6btQO+zfIPvUXmV74AAAAAAAAAAE1r3r0UWIW6K3V6utERa7UgBvm5P/mROQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBIhWcSXdGMAWyUTXwCjAF0lEdAklFQJw84gnV9lChoBkdAcQUh6jWTYGgHTTYCaAhHQJJTY0Nz8xd1fZQoaAZHQHJJMENe+mFoB01NAWgIR0CSVDqiXY16dX2UKGgGR0ByjV/ZuhsZaAdNxQFoCEdAklU/hl18s3V9lChoBkdAbn/VurIYFmgHTUgBaAhHQJJVzEYO2Ap1fZQoaAZHQHD53O8kD6poB02cAmgIR0CSXCRW912adX2UKGgGR0Bvu06aLGaQaAdN0AFoCEdAklyFuWKMvXV9lChoBkdARt6m65Gz8mgHS+RoCEdAkl13WSU1RHV9lChoBkdAcN29q1w5vWgHTbkBaAhHQJJeQSh8IAx1fZQoaAZHQGDiF/x2B8RoB03oA2gIR0CSX4xKg7HRdX2UKGgGR0ByzP7IkqtpaAdNSANoCEdAkmBQP/aQFXV9lChoBkdAYM582rGR3mgHTegDaAhHQJJlMK6WgOB1fZQoaAZHQG6wTbWVeKNoB039AWgIR0CSZlHPeHi4dX2UKGgGR0ByGQVVPva2aAdNZgFoCEdAkmaRbjcVQHV9lChoBkdAcXxtBv73wmgHTZkCaAhHQJJnwuDjBEd1fZQoaAZHQE1lAWzniedoB0vdaAhHQJJn6yfL9uR1fZQoaAZHQHInr2pQ1rJoB01uAWgIR0CSaKIjW07bdX2UKGgGR0Bt6Fucc2itaAdNXQJoCEdAkmospTdcjnV9lChoBkdAcNWUjLSuyWgHTR8DaAhHQJJqYir1dxB1fZQoaAZHQG4MRyfcvdxoB00+AWgIR0CSfesEq2BrdX2UKGgGR0BgwhVENOM3aAdN6ANoCEdAkn5B2GIsRXV9lChoBkdAcELMF2V3U2gHTTQBaAhHQJJ+aukk8ih1fZQoaAZHQHH5G0VrRBxoB02rAWgIR0CSgNIDHOrydX2UKGgGR0Bx1OzhP0qZaAdNfAFoCEdAkoIBzFMqSXV9lChoBkdAbf6g3cYZVGgHTUIBaAhHQJKEPhybQTp1fZQoaAZHQHDrsjJMg2ZoB02KAmgIR0CShKl/6O5sdX2UKGgGR0BtK0DZDiOvaAdNVQFoCEdAkobAyZa3Z3V9lChoBkdAcP8L3K0UoWgHTaIBaAhHQJKHKHYYixF1fZQoaAZHQHJBylvZRKpoB01mAWgIR0CSh0h1Tzd2dX2UKGgGR0BwyYyqMm4RaAdNOwFoCEdAkogohUzbe3V9lChoBkdAcN4G7SRbKWgHTccBaAhHQJKK6fK6nR91fZQoaAZHQG9+hD5TIeZoB008AWgIR0CSjBOFxn3+dX2UKGgGR0BvRs/lhgE2aAdNgAFoCEdAkowtMPBi1HV9lChoBkdAcNU+g13t8mgHTUUBaAhHQJKNGxkd3jd1fZQoaAZHQHIQei8FpwloB03NAWgIR0CSjgDVH4GmdX2UKGgGR0BMGEn1FpfyaAdLyGgIR0CSkd6F/QSjdX2UKGgGR0BwGwywfQruaAdNqQFoCEdAkpLhh+fAbnV9lChoBkdAcEVZmZmZmmgHTbADaAhHQJKTKc3EQ5F1fZQoaAZHQHIrtI5HVgBoB02QAWgIR0CSloDLr5ZbdX2UKGgGR0BvT6CFsYVJaAdNJQFoCEdAkphBI8QqZ3V9lChoBkdAcPqWD6Fds2gHTUYBaAhHQJKY77zkIX11fZQoaAZHQHFUhQ79ycVoB03kAWgIR0CSmQvAXVLBdX2UKGgGR0BxqHGJemelaAdNeAFoCEdAkprLW3BpH3V9lChoBkdAcqjaRZEDyWgHTeABaAhHQJKcLwAlv611fZQoaAZHQGTxgp8WsRxoB03oA2gIR0CSnc5OrQw9dX2UKGgGR0BvE4An2IweaAdNjwFoCEdAkp7DqW1MNHV9lChoBkdAbIGN8VpKz2gHTWEBaAhHQJKfSASWZ7Z1fZQoaAZHQG7rKFyq+8JoB003AWgIR0CSoNyBkI5YdX2UKGgGR0BviPnhbW3CaAdNVAJoCEdAkqGAuIyj6HV9lChoBkdAbhIvDgqEvmgHTVoBaAhHQJKhgKneizt1fZQoaAZHQHF4sVUMoc9oB001AWgIR0CSoybhWHUMdX2UKGgGR0Bx8HjkuHvdaAdN/QFoCEdAkqPICdSVGHV9lChoBkdAcUr2hqTKT2gHTWMBaAhHQJKmXR2KVIJ1fZQoaAZHQHJ7C13MY/FoB03HAWgIR0CSpnJb+tKadX2UKGgGR0BvKPMjeKsNaAdNhwFoCEdAkqiQr1/UfHV9lChoBkdAceHw6ySmqGgHTWICaAhHQJKorrAxi5N1fZQoaAZHQHAhOIInjQ1oB02sAWgIR0CSvUMm4RVZdX2UKGgGR0BxH39fkWAPaAdNKwFoCEdAkr3/9cbBGnV9lChoBkdAb1VpKzzErGgHTXUBaAhHQJK+AWFev6l1fZQoaAZHQG7bBPj4pMJoB01cAWgIR0CSvm4ZuQ6qdX2UKGgGR0BvduI42jwhaAdNcwFoCEdAkr7UYO2AoXV9lChoBkdAcGd8HfMwDmgHTR8DaAhHQJLBzlp48lp1fZQoaAZHQHHvI4ZMtbtoB00xAmgIR0CSwc9d/rjYdX2UKGgGR0BxvKTwDvE1aAdNdwFoCEdAksKqBRQ793V9lChoBkdAcVDvc8DB/WgHTYcBaAhHQJLDdhlUZNx1fZQoaAZHQG4A6g/TsppoB00bAWgIR0CSxKf8/D+BdX2UKGgGR0BwBkYTCcgAaAdNHgFoCEdAksTj7di2D3V9lChoBkdAcA1lO45LiGgHTYABaAhHQJLGWI+GGmF1fZQoaAZHQHEBTV+Zw4toB02ZAWgIR0CSxq779AHFdX2UKGgGR0BxiH8KohpyaAdNXAFoCEdAksl7x7RfGHV9lChoBkdAcJGQYk3S8mgHTXgBaAhHQJLKvCXQdCF1fZQoaAZHQHFnTXOGCZpoB00pAWgIR0CSytApKBd2dX2UKGgGR0ByBxVo6CDmaAdNFAFoCEdAks2JPl+3IHV9lChoBkdActcuWrwOOWgHTU8BaAhHQJLNwNmUW2x1fZQoaAZHQHCDyDEm6XloB01cAWgIR0CSzd/WlMyrdX2UKGgGR0BxVCef7JnyaAdNJgFoCEdAks/Hvc8DCHV9lChoBkdAbUx/rjYI0WgHTTsBaAhHQJLRwlY2bXp1fZQoaAZHQG0wSCe2/i5oB003AWgIR0CS0c09QoCudX2UKGgGR0Bu8BKg7HQyaAdNewFoCEdAktLHQQcxTXV9lChoBkdAcabneizsyGgHTX0BaAhHQJLWX7tRekZ1fZQoaAZHQHIXxAfMfRxoB03GA2gIR0CS1t1fmcOLdX2UKGgGR0ByiM1XNke7aAdNkAFoCEdAktedpVS4v3V9lChoBkdAcCLfYjB2wGgHTVkCaAhHQJLY6OJcgQp1fZQoaAZHQG40EuHvc8FoB01CAWgIR0CS2QfbsWwedX2UKGgGR0BumIPEsJ6ZaAdNagFoCEdAktlSi/O+qXV9lChoBkdAcUYkSVW0Z2gHTVsBaAhHQJLZ6T8pCrt1fZQoaAZHQGzjfdIoVmBoB01OAWgIR0CS3IUxVQyidX2UKGgGR0BwgtDMNc4YaAdNUwFoCEdAktydtALRbHV9lChoBkdAbTbe54GD+WgHTWMBaAhHQJLdCmVJL/V1fZQoaAZHQHAmlAZ88cNoB01oAWgIR0CS3zlnh86WdX2UKGgGR0BwC+hAWzniaAdNPQFoCEdAkt9OMQ2/BXV9lChoBkdAcBO6RyOrAGgHTT0BaAhHQJLgNEw35vd1fZQoaAZHQHI05Ke05U9oB00nA2gIR0CS4OXvH93sdX2UKGgGR0BwC+tU4rBkaAdNSQFoCEdAkuPRcu8K5XV9lChoBkdATtNpdrwfAGgHTRQBaAhHQJLkh3pwCKd1fZQoaAZHQHFM1CTlkpZoB02LAWgIR0CS5ibjcVQAdX2UKGgGR0Bx53238XN1aAdNTQFoCEdAkuY9aY/mknV9lChoBkdAcazSDAaegGgHTVcBaAhHQJLmPYK6WgR1fZQoaAZHQHBchGYrrgRoB01hAWgIR0CS5q5imVJMdX2UKGgGR0Bwx0bFS88LaAdNHgFoCEdAkudj6BRQ8HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |