dfsj commited on
Commit
a1e566c
·
1 Parent(s): e05dfe0

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 250.52 +/- 18.87
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f115d34bca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f115d34bd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f115d34bdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f115d34be50>", "_build": "<function ActorCriticPolicy._build at 0x7f115d34bee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f115d34bf70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f115d34f040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f115d34f0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f115d34f160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f115d34f1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f115d34f280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f115d3484b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671527403705093556, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE2wfz2uqYi6eriUO0RKJrYjJ0u77uaqugAAgD8AAIA/5nJwPY+mP7pqZuG6f/ZitvZfDLr6GgM6AACAPwAAgD8GpyA+zxZWvPiX5DyKFGa7pnm1vWoBPLwAAIA/AACAPzMskT0KJ1+5Kf+vNqxeBzKMtaA6w//PtQAAgD8AAIA/zdWSPFwHcbq8KZ07PhyhNpDx8rpSK7a6AACAPwAAgD9mLYY8KfhpuvZY9Dm5Mkk2ZCkzOu/3QjUAAIA/AACAP5NjGz5DsyC8oZ1DO+lQh7nOrIi9dOCGugAAgD8AAIA/ZtBtvMMxVbqhor25T0GENRgDVLiYCd84AACAPwAAgD/mvbo9j45aur9AGbxgsA42h8GnuojAg7UAAIA/AACAP2ZqyLv2HHe6muckOybQmjXiZrK6CP5AugAAgD8AAIA/MyXlPCmwM7oWldE6RFMgNPiEY7sCHPW5AACAPwAAgD8zBxi9xslEPxCM+DzHWYa+IFXru/g5oLwAAAAAAAAAAABMND7RNQc/7+ANvunlRr6eOBU7Q+LDvAAAAAAAAAAAALwKPUJDOj4rwzo9L+AuvpGEjDwuvJs9AAAAAAAAAACalA899gBRusYBA7wDMgI4wH2cO9x3G7cAAIA/AACAP7ORBT1iW4c/stM7PQJ8ZL5C0bS6JCHCPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDFnd6jkaYkCUhpRSlIwBbJRN6AOMAXSUR0ChM6TP0I1MdX2UKGgGaAloD0MIBDkoYSbRYkCUhpRSlGgVTegDaBZHQKEz1Dv3JxN1fZQoaAZoCWgPQwhtNlZintNmQJSGlFKUaBVN6ANoFkdAoTTNjbzshXV9lChoBmgJaA9DCEJClC/oi2JAlIaUUpRoFU3oA2gWR0ChNoLxRVIadX2UKGgGaAloD0MI61Ij9DMYYkCUhpRSlGgVTegDaBZHQKE4P6sQumJ1fZQoaAZoCWgPQwjURnU6kHFbQJSGlFKUaBVN6ANoFkdAoTlTLfUF0XV9lChoBmgJaA9DCM3NN6J7VGJAlIaUUpRoFU3oA2gWR0ChOlpL/S6UdX2UKGgGaAloD0MIXrpJDALtXkCUhpRSlGgVTegDaBZHQKE64t16mfp1fZQoaAZoCWgPQwiTVKaYg51gQJSGlFKUaBVN6ANoFkdAoT77y1/lQ3V9lChoBmgJaA9DCFZmSutvr2ZAlIaUUpRoFU3oA2gWR0ChQHf47A+IdX2UKGgGaAloD0MIVtehmhJrYkCUhpRSlGgVTegDaBZHQKFBshh6Skl1fZQoaAZoCWgPQwg0L4fdd3JDQJSGlFKUaBVL+GgWR0ChQu8wYcebdX2UKGgGaAloD0MIvDydK0pIXECUhpRSlGgVTegDaBZHQKFEcVSn+AF1fZQoaAZoCWgPQwi7uI0G8CxjQJSGlFKUaBVN6ANoFkdAoU0a0hNdq3V9lChoBmgJaA9DCBqmttRBpmVAlIaUUpRoFU3oA2gWR0ChWE0Q9RrKdX2UKGgGaAloD0MIv7Z++s+5YkCUhpRSlGgVTegDaBZHQKFY6igTRIB1fZQoaAZoCWgPQwge/MQBdF5mQJSGlFKUaBVN6ANoFkdAoV6Vvybx3HV9lChoBmgJaA9DCAGFevqIsGZAlIaUUpRoFU3oA2gWR0ChX0nssxwidX2UKGgGaAloD0MIk9+ikyXiYECUhpRSlGgVTegDaBZHQKFfdA44p+d1fZQoaAZoCWgPQwh5IR0ewmxnQJSGlFKUaBVN6ANoFkdAoWB8BXCCSXV9lChoBmgJaA9DCPfKvFVXcGJAlIaUUpRoFU3oA2gWR0ChYkzL4etCdX2UKGgGaAloD0MINEsC1NQBX0CUhpRSlGgVTegDaBZHQKFkh2Pkq+d1fZQoaAZoCWgPQwiRmnYxzf9eQJSGlFKUaBVN6ANoFkdAoWYiBwuM/HV9lChoBmgJaA9DCAlrY+yEgV5AlIaUUpRoFU3oA2gWR0ChZ4sMRYigdX2UKGgGaAloD0MIEFzlCYRpaECUhpRSlGgVTegDaBZHQKFto1og3cZ1fZQoaAZoCWgPQwh87ZklgdllQJSGlFKUaBVN6ANoFkdAoW8i7Ciyp3V9lChoBmgJaA9DCN/42jNL2GRAlIaUUpRoFU3oA2gWR0ChcGNYr8R+dX2UKGgGaAloD0MI/ACkNnFZZUCUhpRSlGgVTegDaBZHQKFxl4bCJoF1fZQoaAZoCWgPQwgCRSxi2FZkQJSGlFKUaBVN6ANoFkdAoXL2bwz+FXV9lChoBmgJaA9DCF3eHK7Vu2VAlIaUUpRoFU3oA2gWR0CheypmEoOQdX2UKGgGaAloD0MIGNLhIQwGYECUhpRSlGgVTegDaBZHQKF8z+hoM8Z1fZQoaAZoCWgPQwiztFNzOVhmQJSGlFKUaBVN6ANoFkdAoYbJSrHU+nV9lChoBmgJaA9DCCxjQzf7bmRAlIaUUpRoFU3oA2gWR0Chi8/etSyddX2UKGgGaAloD0MIVWe1wB5LX0CUhpRSlGgVTegDaBZHQKGMcXgLqlh1fZQoaAZoCWgPQwgP1ZRkHVBiQJSGlFKUaBVN6ANoFkdAoYyYh4dIXnV9lChoBmgJaA9DCKjknNjDmWNAlIaUUpRoFU3oA2gWR0ChjYq77Kq5dX2UKGgGaAloD0MIEwt8RbcTW0CUhpRSlGgVTegDaBZHQKGPLLr5ZbJ1fZQoaAZoCWgPQwhszywJUHpdQJSGlFKUaBVN6ANoFkdAoZDME/0NBnV9lChoBmgJaA9DCOtx32odHGNAlIaUUpRoFU3oA2gWR0Chke6NMoMKdX2UKGgGaAloD0MIh6jCn+GuX0CUhpRSlGgVTegDaBZHQKGS5E74i5d1fZQoaAZoCWgPQwgEr5Y7M1NgQJSGlFKUaBVN6ANoFkdAoZfAKrq+rXV9lChoBmgJaA9DCBxcOua8o2NAlIaUUpRoFU3oA2gWR0ChmU4B/7SBdX2UKGgGaAloD0MISZ9W0Z9fYUCUhpRSlGgVTegDaBZHQKGafTvy9VZ1fZQoaAZoCWgPQwgXLquwmZFmQJSGlFKUaBVN6ANoFkdAoZvDfcer/HV9lChoBmgJaA9DCEGd8uhGlWVAlIaUUpRoFU3oA2gWR0ChnUH4oJAudX2UKGgGaAloD0MIQwQcQhUYZECUhpRSlGgVTegDaBZHQKGln4Vymyh1fZQoaAZoCWgPQwioxeBhWi9iQJSGlFKUaBVN6ANoFkdAoadhl+Vkc3V9lChoBmgJaA9DCKAX7lwY2WdAlIaUUpRoFU3oA2gWR0Chp/eTV2A5dX2UKGgGaAloD0MI5KHvbuVZZUCUhpRSlGgVTegDaBZHQKG28xJul411fZQoaAZoCWgPQwicpPljWhthQJSGlFKUaBVN6ANoFkdAobeWPgeijHV9lChoBmgJaA9DCMITev1JD2RAlIaUUpRoFU3oA2gWR0Cht791dPcjdX2UKGgGaAloD0MInzpWKb1OY0CUhpRSlGgVTegDaBZHQKG4vHQQcxV1fZQoaAZoCWgPQwia0Y+GU+ZhQJSGlFKUaBVN6ANoFkdAobplf1Hvt3V9lChoBmgJaA9DCJdzKa4qWFxAlIaUUpRoFU3oA2gWR0ChvBCTlkpadX2UKGgGaAloD0MIkUdwI+WIY0CUhpRSlGgVTegDaBZHQKG9LNucc2l1fZQoaAZoCWgPQwjt1cdDX+pkQJSGlFKUaBVN6ANoFkdAob4T+BH09XV9lChoBmgJaA9DCB1bzxAOMmJAlIaUUpRoFU3oA2gWR0ChwvybH6uXdX2UKGgGaAloD0MIFokJavg+Y0CUhpRSlGgVTegDaBZHQKHEl1kDp1R1fZQoaAZoCWgPQwjsMZHSbARPQJSGlFKUaBVNGwFoFkdAocVnvc8DCHV9lChoBmgJaA9DCAE0Spf+6GRAlIaUUpRoFU3oA2gWR0Chxd8nNPgvdX2UKGgGaAloD0MILbKd7yc9Y0CUhpRSlGgVTegDaBZHQKHHDTUiILx1fZQoaAZoCWgPQwjJy5pYYMZgQJSGlFKUaBVN6ANoFkdAociRKtga33V9lChoBmgJaA9DCJp3nKKjwWFAlIaUUpRoFU3oA2gWR0Ch0F9/J/5MdX2UKGgGaAloD0MIsp5afXUHZkCUhpRSlGgVTegDaBZHQKHSDXYDklx1fZQoaAZoCWgPQwiQ96qViZVmQJSGlFKUaBVN6ANoFkdAodKVAqur63V9lChoBmgJaA9DCKuuQzUlLWBAlIaUUpRoFU3oA2gWR0Ch4RvvrnkldX2UKGgGaAloD0MI5ShAFMwGX0CUhpRSlGgVTegDaBZHQKHhulw97nh1fZQoaAZoCWgPQwhD4h5Ln+RgQJSGlFKUaBVN6ANoFkdAoeHiohpxm3V9lChoBmgJaA9DCGPuWkI+k2BAlIaUUpRoFU3oA2gWR0Ch4tZ3LV4HdX2UKGgGaAloD0MIVhADXfshZkCUhpRSlGgVTegDaBZHQKHki4YrJ8x1fZQoaAZoCWgPQwjY8sr1NoFlQJSGlFKUaBVN6ANoFkdAoect/axoqXV9lChoBmgJaA9DCGvvU1XoRWVAlIaUUpRoFU3oA2gWR0Ch6BfMGHHndX2UKGgGaAloD0MIowVoW830S0CUhpRSlGgVS/JoFkdAoevgskIHDHV9lChoBmgJaA9DCKWCiqpfzmFAlIaUUpRoFU3oA2gWR0Ch7N52pyZKdX2UKGgGaAloD0MI6NuCpTpOZkCUhpRSlGgVTegDaBZHQKHuV/vv0Ad1fZQoaAZoCWgPQwikbfyJyn5hQJSGlFKUaBVN6ANoFkdAoe8SqlxffHV9lChoBmgJaA9DCB8vpMNDr11AlIaUUpRoFU3oA2gWR0Ch73YR28qXdX2UKGgGaAloD0MIVBoxs8/lYkCUhpRSlGgVTegDaBZHQKHwdeKsMiN1fZQoaAZoCWgPQwhMxjGSPQ5nQJSGlFKUaBVN6ANoFkdAofHVgUlAvHV9lChoBmgJaA9DCAUZARWOK2NAlIaUUpRoFU3oA2gWR0Ch+OcOCoS+dX2UKGgGaAloD0MImtL6WwILY0CUhpRSlGgVTegDaBZHQKH6f4D9wWF1fZQoaAZoCWgPQwhSKuEJPUJmQJSGlFKUaBVN6ANoFkdAofsE5XEIgXV9lChoBmgJaA9DCD8Cf/j5El9AlIaUUpRoFU3oA2gWR0CiCRJwS8J2dX2UKGgGaAloD0MIo+VAD7WOXkCUhpRSlGgVTegDaBZHQKIJtL6DXe51fZQoaAZoCWgPQwgr9wKzQstmQJSGlFKUaBVN6ANoFkdAogniJTER8XV9lChoBmgJaA9DCMN+T6xT42RAlIaUUpRoFU3oA2gWR0CiCsj5bhWHdX2UKGgGaAloD0MIWOIBZVO1YUCUhpRSlGgVTegDaBZHQKIPZEVFhG91fZQoaAZoCWgPQwj9ZmK6kCFlQJSGlFKUaBVN6ANoFkdAohB1mlImPnV9lChoBmgJaA9DCAQBMnRsn2FAlIaUUpRoFU3oA2gWR0CiFISE12q2dX2UKGgGaAloD0MIBOj3/ZtPY0CUhpRSlGgVTegDaBZHQKIViyB06o51fZQoaAZoCWgPQwjmsPuO4ZFlQJSGlFKUaBVN6ANoFkdAohcTKq4pdHV9lChoBmgJaA9DCAvxSLw8n2ZAlIaUUpRoFU3oA2gWR0CiF9P1+RYBdX2UKGgGaAloD0MIA3y3eeMWZ0CUhpRSlGgVTegDaBZHQKIYPKAavRt1fZQoaAZoCWgPQwgrM6X1NxlhQJSGlFKUaBVN6ANoFkdAohlP+sHSnnV9lChoBmgJaA9DCHoZxXLL1WRAlIaUUpRoFU3oA2gWR0CiGqcma6SUdX2UKGgGaAloD0MI1Ce5wybCSUCUhpRSlGgVS+5oFkdAohvn+S8rZ3V9lChoBmgJaA9DCFteud42B0FAlIaUUpRoFUvraBZHQKIgL2RJVbR1fZQoaAZoCWgPQwjWNsXjoh9lQJSGlFKUaBVN6ANoFkdAoiHYi5d4V3V9lChoBmgJaA9DCHukwW1tKWFAlIaUUpRoFU3oA2gWR0CiI1gbp/wzdX2UKGgGaAloD0MIRbjJqLKoYUCUhpRSlGgVTegDaBZHQKIjzE5yU9p1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2800ad0bde76849a03e19d113522adc01c79ab621d0068a47985963374694662
3
+ size 147214
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f115d34bca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f115d34bd30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f115d34bdc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f115d34be50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f115d34bee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f115d34bf70>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f115d34f040>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f115d34f0d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f115d34f160>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f115d34f1f0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f115d34f280>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f115d3484b0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671527403705093556,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE2wfz2uqYi6eriUO0RKJrYjJ0u77uaqugAAgD8AAIA/5nJwPY+mP7pqZuG6f/ZitvZfDLr6GgM6AACAPwAAgD8GpyA+zxZWvPiX5DyKFGa7pnm1vWoBPLwAAIA/AACAPzMskT0KJ1+5Kf+vNqxeBzKMtaA6w//PtQAAgD8AAIA/zdWSPFwHcbq8KZ07PhyhNpDx8rpSK7a6AACAPwAAgD9mLYY8KfhpuvZY9Dm5Mkk2ZCkzOu/3QjUAAIA/AACAP5NjGz5DsyC8oZ1DO+lQh7nOrIi9dOCGugAAgD8AAIA/ZtBtvMMxVbqhor25T0GENRgDVLiYCd84AACAPwAAgD/mvbo9j45aur9AGbxgsA42h8GnuojAg7UAAIA/AACAP2ZqyLv2HHe6muckOybQmjXiZrK6CP5AugAAgD8AAIA/MyXlPCmwM7oWldE6RFMgNPiEY7sCHPW5AACAPwAAgD8zBxi9xslEPxCM+DzHWYa+IFXru/g5oLwAAAAAAAAAAABMND7RNQc/7+ANvunlRr6eOBU7Q+LDvAAAAAAAAAAAALwKPUJDOj4rwzo9L+AuvpGEjDwuvJs9AAAAAAAAAACalA899gBRusYBA7wDMgI4wH2cO9x3G7cAAIA/AACAP7ORBT1iW4c/stM7PQJ8ZL5C0bS6JCHCPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDFnd6jkaYkCUhpRSlIwBbJRN6AOMAXSUR0ChM6TP0I1MdX2UKGgGaAloD0MIBDkoYSbRYkCUhpRSlGgVTegDaBZHQKEz1Dv3JxN1fZQoaAZoCWgPQwhtNlZintNmQJSGlFKUaBVN6ANoFkdAoTTNjbzshXV9lChoBmgJaA9DCEJClC/oi2JAlIaUUpRoFU3oA2gWR0ChNoLxRVIadX2UKGgGaAloD0MI61Ij9DMYYkCUhpRSlGgVTegDaBZHQKE4P6sQumJ1fZQoaAZoCWgPQwjURnU6kHFbQJSGlFKUaBVN6ANoFkdAoTlTLfUF0XV9lChoBmgJaA9DCM3NN6J7VGJAlIaUUpRoFU3oA2gWR0ChOlpL/S6UdX2UKGgGaAloD0MIXrpJDALtXkCUhpRSlGgVTegDaBZHQKE64t16mfp1fZQoaAZoCWgPQwiTVKaYg51gQJSGlFKUaBVN6ANoFkdAoT77y1/lQ3V9lChoBmgJaA9DCFZmSutvr2ZAlIaUUpRoFU3oA2gWR0ChQHf47A+IdX2UKGgGaAloD0MIVtehmhJrYkCUhpRSlGgVTegDaBZHQKFBshh6Skl1fZQoaAZoCWgPQwg0L4fdd3JDQJSGlFKUaBVL+GgWR0ChQu8wYcebdX2UKGgGaAloD0MIvDydK0pIXECUhpRSlGgVTegDaBZHQKFEcVSn+AF1fZQoaAZoCWgPQwi7uI0G8CxjQJSGlFKUaBVN6ANoFkdAoU0a0hNdq3V9lChoBmgJaA9DCBqmttRBpmVAlIaUUpRoFU3oA2gWR0ChWE0Q9RrKdX2UKGgGaAloD0MIv7Z++s+5YkCUhpRSlGgVTegDaBZHQKFY6igTRIB1fZQoaAZoCWgPQwge/MQBdF5mQJSGlFKUaBVN6ANoFkdAoV6Vvybx3HV9lChoBmgJaA9DCAGFevqIsGZAlIaUUpRoFU3oA2gWR0ChX0nssxwidX2UKGgGaAloD0MIk9+ikyXiYECUhpRSlGgVTegDaBZHQKFfdA44p+d1fZQoaAZoCWgPQwh5IR0ewmxnQJSGlFKUaBVN6ANoFkdAoWB8BXCCSXV9lChoBmgJaA9DCPfKvFVXcGJAlIaUUpRoFU3oA2gWR0ChYkzL4etCdX2UKGgGaAloD0MINEsC1NQBX0CUhpRSlGgVTegDaBZHQKFkh2Pkq+d1fZQoaAZoCWgPQwiRmnYxzf9eQJSGlFKUaBVN6ANoFkdAoWYiBwuM/HV9lChoBmgJaA9DCAlrY+yEgV5AlIaUUpRoFU3oA2gWR0ChZ4sMRYigdX2UKGgGaAloD0MIEFzlCYRpaECUhpRSlGgVTegDaBZHQKFto1og3cZ1fZQoaAZoCWgPQwh87ZklgdllQJSGlFKUaBVN6ANoFkdAoW8i7Ciyp3V9lChoBmgJaA9DCN/42jNL2GRAlIaUUpRoFU3oA2gWR0ChcGNYr8R+dX2UKGgGaAloD0MI/ACkNnFZZUCUhpRSlGgVTegDaBZHQKFxl4bCJoF1fZQoaAZoCWgPQwgCRSxi2FZkQJSGlFKUaBVN6ANoFkdAoXL2bwz+FXV9lChoBmgJaA9DCF3eHK7Vu2VAlIaUUpRoFU3oA2gWR0CheypmEoOQdX2UKGgGaAloD0MIGNLhIQwGYECUhpRSlGgVTegDaBZHQKF8z+hoM8Z1fZQoaAZoCWgPQwiztFNzOVhmQJSGlFKUaBVN6ANoFkdAoYbJSrHU+nV9lChoBmgJaA9DCCxjQzf7bmRAlIaUUpRoFU3oA2gWR0Chi8/etSyddX2UKGgGaAloD0MIVWe1wB5LX0CUhpRSlGgVTegDaBZHQKGMcXgLqlh1fZQoaAZoCWgPQwgP1ZRkHVBiQJSGlFKUaBVN6ANoFkdAoYyYh4dIXnV9lChoBmgJaA9DCKjknNjDmWNAlIaUUpRoFU3oA2gWR0ChjYq77Kq5dX2UKGgGaAloD0MIEwt8RbcTW0CUhpRSlGgVTegDaBZHQKGPLLr5ZbJ1fZQoaAZoCWgPQwhszywJUHpdQJSGlFKUaBVN6ANoFkdAoZDME/0NBnV9lChoBmgJaA9DCOtx32odHGNAlIaUUpRoFU3oA2gWR0Chke6NMoMKdX2UKGgGaAloD0MIh6jCn+GuX0CUhpRSlGgVTegDaBZHQKGS5E74i5d1fZQoaAZoCWgPQwgEr5Y7M1NgQJSGlFKUaBVN6ANoFkdAoZfAKrq+rXV9lChoBmgJaA9DCBxcOua8o2NAlIaUUpRoFU3oA2gWR0ChmU4B/7SBdX2UKGgGaAloD0MISZ9W0Z9fYUCUhpRSlGgVTegDaBZHQKGafTvy9VZ1fZQoaAZoCWgPQwgXLquwmZFmQJSGlFKUaBVN6ANoFkdAoZvDfcer/HV9lChoBmgJaA9DCEGd8uhGlWVAlIaUUpRoFU3oA2gWR0ChnUH4oJAudX2UKGgGaAloD0MIQwQcQhUYZECUhpRSlGgVTegDaBZHQKGln4Vymyh1fZQoaAZoCWgPQwioxeBhWi9iQJSGlFKUaBVN6ANoFkdAoadhl+Vkc3V9lChoBmgJaA9DCKAX7lwY2WdAlIaUUpRoFU3oA2gWR0Chp/eTV2A5dX2UKGgGaAloD0MI5KHvbuVZZUCUhpRSlGgVTegDaBZHQKG28xJul411fZQoaAZoCWgPQwicpPljWhthQJSGlFKUaBVN6ANoFkdAobeWPgeijHV9lChoBmgJaA9DCMITev1JD2RAlIaUUpRoFU3oA2gWR0Cht791dPcjdX2UKGgGaAloD0MInzpWKb1OY0CUhpRSlGgVTegDaBZHQKG4vHQQcxV1fZQoaAZoCWgPQwia0Y+GU+ZhQJSGlFKUaBVN6ANoFkdAobplf1Hvt3V9lChoBmgJaA9DCJdzKa4qWFxAlIaUUpRoFU3oA2gWR0ChvBCTlkpadX2UKGgGaAloD0MIkUdwI+WIY0CUhpRSlGgVTegDaBZHQKG9LNucc2l1fZQoaAZoCWgPQwjt1cdDX+pkQJSGlFKUaBVN6ANoFkdAob4T+BH09XV9lChoBmgJaA9DCB1bzxAOMmJAlIaUUpRoFU3oA2gWR0ChwvybH6uXdX2UKGgGaAloD0MIFokJavg+Y0CUhpRSlGgVTegDaBZHQKHEl1kDp1R1fZQoaAZoCWgPQwjsMZHSbARPQJSGlFKUaBVNGwFoFkdAocVnvc8DCHV9lChoBmgJaA9DCAE0Spf+6GRAlIaUUpRoFU3oA2gWR0Chxd8nNPgvdX2UKGgGaAloD0MILbKd7yc9Y0CUhpRSlGgVTegDaBZHQKHHDTUiILx1fZQoaAZoCWgPQwjJy5pYYMZgQJSGlFKUaBVN6ANoFkdAociRKtga33V9lChoBmgJaA9DCJp3nKKjwWFAlIaUUpRoFU3oA2gWR0Ch0F9/J/5MdX2UKGgGaAloD0MIsp5afXUHZkCUhpRSlGgVTegDaBZHQKHSDXYDklx1fZQoaAZoCWgPQwiQ96qViZVmQJSGlFKUaBVN6ANoFkdAodKVAqur63V9lChoBmgJaA9DCKuuQzUlLWBAlIaUUpRoFU3oA2gWR0Ch4RvvrnkldX2UKGgGaAloD0MI5ShAFMwGX0CUhpRSlGgVTegDaBZHQKHhulw97nh1fZQoaAZoCWgPQwhD4h5Ln+RgQJSGlFKUaBVN6ANoFkdAoeHiohpxm3V9lChoBmgJaA9DCGPuWkI+k2BAlIaUUpRoFU3oA2gWR0Ch4tZ3LV4HdX2UKGgGaAloD0MIVhADXfshZkCUhpRSlGgVTegDaBZHQKHki4YrJ8x1fZQoaAZoCWgPQwjY8sr1NoFlQJSGlFKUaBVN6ANoFkdAoect/axoqXV9lChoBmgJaA9DCGvvU1XoRWVAlIaUUpRoFU3oA2gWR0Ch6BfMGHHndX2UKGgGaAloD0MIowVoW830S0CUhpRSlGgVS/JoFkdAoevgskIHDHV9lChoBmgJaA9DCKWCiqpfzmFAlIaUUpRoFU3oA2gWR0Ch7N52pyZKdX2UKGgGaAloD0MI6NuCpTpOZkCUhpRSlGgVTegDaBZHQKHuV/vv0Ad1fZQoaAZoCWgPQwikbfyJyn5hQJSGlFKUaBVN6ANoFkdAoe8SqlxffHV9lChoBmgJaA9DCB8vpMNDr11AlIaUUpRoFU3oA2gWR0Ch73YR28qXdX2UKGgGaAloD0MIVBoxs8/lYkCUhpRSlGgVTegDaBZHQKHwdeKsMiN1fZQoaAZoCWgPQwhMxjGSPQ5nQJSGlFKUaBVN6ANoFkdAofHVgUlAvHV9lChoBmgJaA9DCAUZARWOK2NAlIaUUpRoFU3oA2gWR0Ch+OcOCoS+dX2UKGgGaAloD0MImtL6WwILY0CUhpRSlGgVTegDaBZHQKH6f4D9wWF1fZQoaAZoCWgPQwhSKuEJPUJmQJSGlFKUaBVN6ANoFkdAofsE5XEIgXV9lChoBmgJaA9DCD8Cf/j5El9AlIaUUpRoFU3oA2gWR0CiCRJwS8J2dX2UKGgGaAloD0MIo+VAD7WOXkCUhpRSlGgVTegDaBZHQKIJtL6DXe51fZQoaAZoCWgPQwgr9wKzQstmQJSGlFKUaBVN6ANoFkdAogniJTER8XV9lChoBmgJaA9DCMN+T6xT42RAlIaUUpRoFU3oA2gWR0CiCsj5bhWHdX2UKGgGaAloD0MIWOIBZVO1YUCUhpRSlGgVTegDaBZHQKIPZEVFhG91fZQoaAZoCWgPQwj9ZmK6kCFlQJSGlFKUaBVN6ANoFkdAohB1mlImPnV9lChoBmgJaA9DCAQBMnRsn2FAlIaUUpRoFU3oA2gWR0CiFISE12q2dX2UKGgGaAloD0MIBOj3/ZtPY0CUhpRSlGgVTegDaBZHQKIViyB06o51fZQoaAZoCWgPQwjmsPuO4ZFlQJSGlFKUaBVN6ANoFkdAohcTKq4pdHV9lChoBmgJaA9DCAvxSLw8n2ZAlIaUUpRoFU3oA2gWR0CiF9P1+RYBdX2UKGgGaAloD0MIA3y3eeMWZ0CUhpRSlGgVTegDaBZHQKIYPKAavRt1fZQoaAZoCWgPQwgrM6X1NxlhQJSGlFKUaBVN6ANoFkdAohlP+sHSnnV9lChoBmgJaA9DCHoZxXLL1WRAlIaUUpRoFU3oA2gWR0CiGqcma6SUdX2UKGgGaAloD0MI1Ce5wybCSUCUhpRSlGgVS+5oFkdAohvn+S8rZ3V9lChoBmgJaA9DCFteud42B0FAlIaUUpRoFUvraBZHQKIgL2RJVbR1fZQoaAZoCWgPQwjWNsXjoh9lQJSGlFKUaBVN6ANoFkdAoiHYi5d4V3V9lChoBmgJaA9DCHukwW1tKWFAlIaUUpRoFU3oA2gWR0CiI1gbp/wzdX2UKGgGaAloD0MIRbjJqLKoYUCUhpRSlGgVTegDaBZHQKIjzE5yU9p1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:703c1c057c1733f960c17bcec38a7a881e3c5a7175adaaca47712ccf570ce3bf
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32e783c49394f13fd75e043ca03e8cb34900cdf384e77cb6ad4839e02d8ddd51
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (231 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 250.51636324781256, "std_reward": 18.873239666697707, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-20T09:58:12.203447"}