dfurman commited on
Commit
b66dee6
·
1 Parent(s): 59e80b1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -5
README.md CHANGED
@@ -15,7 +15,7 @@ base_model: meta-llama/Llama-2-7b-hf
15
 
16
  This instruction model was built via parameter-efficient QLoRA finetuning of [Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the first 5k rows of [ehartford/dolphin](https://huggingface.co/datasets/ehartford/dolphin) and the first 5k rows of [garage-bAInd/Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus). Finetuning was executed on 1x A100 (40 GB SXM) for roughly xx hours on the [Lambda Labs](https://cloud.lambdalabs.com/instances) platform.
17
 
18
- ### Benchmark metrics
19
 
20
  | Metric | Value |
21
  |-----------------------|-------|
@@ -27,7 +27,7 @@ This instruction model was built via parameter-efficient QLoRA finetuning of [Ll
27
 
28
  We use state-of-the-art [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as Hugging Face's [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
29
 
30
- ### Helpful links
31
 
32
  * Model license: coming
33
  * Basic usage: coming
@@ -51,9 +51,76 @@ While great efforts have been taken to clean the pretraining data, it is possibl
51
 
52
  ## How to use
53
 
54
- coming
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
- ### Runtime tests
57
 
58
  coming
59
 
@@ -85,6 +152,6 @@ The following `bitsandbytes` quantization config was used during training:
85
  - bnb_4bit_use_double_quant: False
86
  - bnb_4bit_compute_dtype: bfloat16
87
 
88
- ### Framework versions
89
 
90
  - PEFT 0.6.0.dev0
 
15
 
16
  This instruction model was built via parameter-efficient QLoRA finetuning of [Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the first 5k rows of [ehartford/dolphin](https://huggingface.co/datasets/ehartford/dolphin) and the first 5k rows of [garage-bAInd/Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus). Finetuning was executed on 1x A100 (40 GB SXM) for roughly xx hours on the [Lambda Labs](https://cloud.lambdalabs.com/instances) platform.
17
 
18
+ ## Benchmark metrics
19
 
20
  | Metric | Value |
21
  |-----------------------|-------|
 
27
 
28
  We use state-of-the-art [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as Hugging Face's [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
29
 
30
+ ## Helpful links
31
 
32
  * Model license: coming
33
  * Basic usage: coming
 
51
 
52
  ## How to use
53
 
54
+ * [notebook](assets/basic_inference_llama_2_dolphin.ipynb)
55
+
56
+ ```python
57
+ !pip install -q -U huggingface_hub peft transformers torch accelerate
58
+ ```
59
+
60
+ ```python
61
+ from huggingface_hub import notebook_login
62
+ import torch
63
+ from peft import PeftModel, PeftConfig
64
+ from transformers import (
65
+ AutoModelForCausalLM,
66
+ AutoTokenizer,
67
+ BitsAndBytesConfig,
68
+ pipeline,
69
+ )
70
+
71
+ notebook_login()
72
+ ```
73
+
74
+ ```python
75
+ peft_model_id = "dfurman/llama-2-7b-instruct-peft"
76
+ config = PeftConfig.from_pretrained(peft_model_id)
77
+
78
+ bnb_config = BitsAndBytesConfig(
79
+ load_in_4bit=True,
80
+ bnb_4bit_quant_type="nf4",
81
+ bnb_4bit_compute_dtype=torch.bfloat16,
82
+ )
83
+
84
+ model = AutoModelForCausalLM.from_pretrained(
85
+ config.base_model_name_or_path,
86
+ quantization_config=bnb_config,
87
+ use_auth_token=True,
88
+ device_map="auto",
89
+ )
90
+
91
+ tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path, use_fast=True)
92
+ tokenizer.pad_token = tokenizer.eos_token
93
+
94
+ model = PeftModel.from_pretrained(model, peft_model_id)
95
+
96
+ format_template = "You are a helpful assistant. {query}\n"
97
+ ```
98
+
99
+ ```python
100
+ # First, format the prompt
101
+ query = "Tell me a recipe for vegan banana bread."
102
+ prompt = format_template.format(query=query)
103
+
104
+ # Inference can be done using model.generate
105
+ print("\n\n*** Generate:")
106
+
107
+ input_ids = tokenizer(prompt, return_tensors="pt").input_ids.cuda()
108
+ with torch.autocast("cuda", dtype=torch.bfloat16):
109
+ output = model.generate(
110
+ input_ids=input_ids,
111
+ max_new_tokens=512,
112
+ do_sample=True,
113
+ temperature=0.7,
114
+ return_dict_in_generate=True,
115
+ eos_token_id=tokenizer.eos_token_id,
116
+ pad_token_id=tokenizer.pad_token_id,
117
+ repetition_penalty=1.2,
118
+ )
119
+
120
+ print(tokenizer.decode(output["sequences"][0], skip_special_tokens=True))
121
+ ```
122
 
123
+ ## Runtime tests
124
 
125
  coming
126
 
 
152
  - bnb_4bit_use_double_quant: False
153
  - bnb_4bit_compute_dtype: bfloat16
154
 
155
+ ## Framework versions
156
 
157
  - PEFT 0.6.0.dev0