dfurman commited on
Commit
d66671c
·
1 Parent(s): dcb084b

Upload model

Browse files
Files changed (3) hide show
  1. README.md +2 -111
  2. adapter_config.json +23 -0
  3. adapter_model.safetensors +3 -0
README.md CHANGED
@@ -1,118 +1,9 @@
1
  ---
2
  library_name: peft
3
- license: llama2
4
- datasets:
5
- - ehartford/dolphin
6
- - garage-bAInd/Open-Platypus
7
- tags:
8
- - llama-2
9
- inference: false
10
- pipeline_tag: text-generation
11
- ---
12
-
13
- # llama-2-7b-dolphin 🦙🐬
14
-
15
- This instruction model was built via parameter-efficient QLoRA finetuning of [llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the first 5k rows of [ehartford/dolphin](https://huggingface.co/datasets/ehartford/dolphin) and the first 5k riws of [garage-bAInd/Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus). Finetuning was executed on 1x A100 (40 GB SXM) for roughly 1.3 hours on the [Lambda Labs](https://cloud.lambdalabs.com/instances) platform.
16
-
17
-
18
- * Model license: Llama 2 Community License Agreement
19
- * Basic usage: [notebook](assets/basic_inference_llama_2_7b_dolphin.ipynb)
20
- * Finetuning script: [script](https://github.com/daniel-furman/sft-demos/blob/main/src/sft/one_gpu/llama-2/dolphin/sft-llama-2-7b-dolphin-peft.py)
21
- * Loss curves: [plot](https://huggingface.co/dfurman/llama-2-7b-dolphin-peft#finetuning-description)
22
- * Runtime stats: [table](https://huggingface.co/dfurman/llama-2-7b-dolphin-peft#runtime-tests)
23
-
24
- ### Example prompts and responses
25
-
26
- Example 1:
27
-
28
- **User**:
29
- >You are a helpful assistant. Write me a numbered list of things to do in New York City.\n
30
-
31
- **llama-2-7b-dolphin-peft**:
32
-
33
- coming
34
-
35
- <br>
36
-
37
- Example 2:
38
-
39
- **User**:
40
- >You are a helpful assistant. Write a short email inviting my friends to a dinner party on Friday. Respond succinctly.\n"
41
-
42
- **llama-2-7b-dolphin-peft**:
43
-
44
- coming
45
-
46
- <br>
47
-
48
- ## Model Description
49
-
50
- The architecture is a modification of a standard decoder-only transformer.
51
-
52
- The llama-2-7b models have been modified from a standard transformer in the following ways:
53
- * It uses the [SwiGLU activation function](https://arxiv.org/abs/2002.05202)
54
- * It uses [rotary positional embeddings](https://arxiv.org/abs/2104.09864) (RoPE)
55
-
56
- | Hyperparameter | Value |
57
- |----------------|-------|
58
- | n_parameters | 7B |
59
- | tokens | 2.0T |
60
- | vocab size | 32000 |
61
- | sequence length | 4096 |
62
-
63
- ## Finetuning Description
64
-
65
- ![loss curves](https://raw.githubusercontent.com/daniel-furman/sft-demos/main/assets/jul_24_23_1_13_00_log_loss_curves_llama-2-7b-dolphin.png)
66
-
67
- The above loss curve was generated from the run's private wandb.ai log.
68
-
69
- ## PreTraining Data
70
-
71
- For more details on the pretraining process, see [Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf).
72
-
73
- The data was tokenized using the [Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) tokenizer.
74
-
75
- ## Limitations and Biases
76
-
77
- _The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_
78
-
79
- This model can produce factually incorrect output, and should not be relied on to produce factually accurate information.
80
- This model was trained on various public datasets.
81
- While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
82
-
83
-
84
- ## How to Use
85
-
86
- coming
87
-
88
- ### Runtime tests
89
-
90
- coming
91
-
92
- ## Acknowledgements
93
-
94
- This model was finetuned by Daniel Furman on Sep 10, 2023 and is intended primarily for research purposes.
95
-
96
- ## Disclaimer
97
-
98
- The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes.
99
-
100
- ## Meta citation for llama-2 blog
101
-
102
- ```
103
- @online{Meta2023Introducing,
104
- author = {Meta AI},
105
- title = {Meta and Microsoft Introduce the Next Generation of Llama},
106
- year = {2023},
107
- url = {https://about.fb.com/news/2023/07/llama-2/},
108
- note = {Accessed: 2023-07-24},
109
- urldate = {2023-07-24}
110
- }
111
- ```
112
-
113
  ---
 
114
 
115
  ### Framework versions
116
 
117
 
118
- - PEFT 0.5.0.dev0
 
1
  ---
2
  library_name: peft
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
4
+ ## Training procedure
5
 
6
  ### Framework versions
7
 
8
 
9
+ - PEFT 0.6.0.dev0
adapter_config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_mapping": null,
3
+ "base_model_name_or_path": "meta-llama/Llama-2-7b-hf",
4
+ "bias": "none",
5
+ "fan_in_fan_out": false,
6
+ "inference_mode": true,
7
+ "init_lora_weights": true,
8
+ "layers_pattern": null,
9
+ "layers_to_transform": null,
10
+ "lora_alpha": 16,
11
+ "lora_dropout": 0.1,
12
+ "modules_to_save": null,
13
+ "peft_type": "LORA",
14
+ "r": 64,
15
+ "revision": null,
16
+ "target_modules": [
17
+ "q_proj",
18
+ "k_proj",
19
+ "v_proj",
20
+ "o_proj"
21
+ ],
22
+ "task_type": "CAUSAL_LM"
23
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c8bf9562024a294e6cf0668d48975fa3599dedb86d94d267acc4d1f1cd9bd42
3
+ size 268470272