dhanishetty commited on
Commit
d6ba95b
1 Parent(s): 4ef537f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +101 -101
README.md CHANGED
@@ -1,101 +1,101 @@
1
- ---
2
- license: apache-2.0
3
- base_model: google-bert/bert-base-uncased
4
- tags:
5
- - generated_from_trainer
6
- model-index:
7
- - name: my_awesome_wnut_model
8
- results: []
9
- ---
10
-
11
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
- should probably proofread and complete it, then remove this comment. -->
13
-
14
- [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/dhanishetty-personaluse/huggingface/runs/5uvs4op2)
15
- # my_awesome_wnut_model
16
-
17
- This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset.
18
- It achieves the following results on the evaluation set:
19
- - Loss: 0.0596
20
-
21
- ## Model description
22
-
23
- More information needed
24
-
25
- ## Intended uses & limitations
26
-
27
- More information needed
28
-
29
- ## Training and evaluation data
30
-
31
- More information needed
32
-
33
- ## Training procedure
34
-
35
- ### Training hyperparameters
36
-
37
- The following hyperparameters were used during training:
38
- - learning_rate: 5e-05
39
- - train_batch_size: 8
40
- - eval_batch_size: 8
41
- - seed: 42
42
- - gradient_accumulation_steps: 4
43
- - total_train_batch_size: 32
44
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
- - lr_scheduler_type: inverse_sqrt
46
- - lr_scheduler_warmup_ratio: 0.1
47
- - num_epochs: 1
48
-
49
- ### Training results
50
-
51
- | Training Loss | Epoch | Step | Validation Loss |
52
- |:-------------:|:-----:|:----:|:---------------:|
53
- | 2.2234 | 0.024 | 30 | 0.9557 |
54
- | 0.4601 | 0.048 | 60 | 0.4359 |
55
- | 0.3149 | 0.072 | 90 | 0.2795 |
56
- | 0.2403 | 0.096 | 120 | 0.2142 |
57
- | 0.1876 | 0.12 | 150 | 0.1714 |
58
- | 0.1691 | 0.144 | 180 | 0.1488 |
59
- | 0.1394 | 0.168 | 210 | 0.1273 |
60
- | 0.1264 | 0.192 | 240 | 0.1160 |
61
- | 0.1113 | 0.216 | 270 | 0.1079 |
62
- | 0.1148 | 0.24 | 300 | 0.0992 |
63
- | 0.0995 | 0.264 | 330 | 0.0940 |
64
- | 0.096 | 0.288 | 360 | 0.0941 |
65
- | 0.0954 | 0.312 | 390 | 0.0854 |
66
- | 0.089 | 0.336 | 420 | 0.0899 |
67
- | 0.0826 | 0.36 | 450 | 0.0841 |
68
- | 0.0872 | 0.384 | 480 | 0.0811 |
69
- | 0.0794 | 0.408 | 510 | 0.0759 |
70
- | 0.0756 | 0.432 | 540 | 0.0766 |
71
- | 0.0826 | 0.456 | 570 | 0.0729 |
72
- | 0.0841 | 0.48 | 600 | 0.0715 |
73
- | 0.076 | 0.504 | 630 | 0.0737 |
74
- | 0.0746 | 0.528 | 660 | 0.0691 |
75
- | 0.0719 | 0.552 | 690 | 0.0697 |
76
- | 0.0722 | 0.576 | 720 | 0.0673 |
77
- | 0.0713 | 0.6 | 750 | 0.0656 |
78
- | 0.0671 | 0.624 | 780 | 0.0652 |
79
- | 0.0741 | 0.648 | 810 | 0.0675 |
80
- | 0.0723 | 0.672 | 840 | 0.0663 |
81
- | 0.0687 | 0.696 | 870 | 0.0649 |
82
- | 0.067 | 0.72 | 900 | 0.0637 |
83
- | 0.0623 | 0.744 | 930 | 0.0643 |
84
- | 0.0599 | 0.768 | 960 | 0.0643 |
85
- | 0.0686 | 0.792 | 990 | 0.0624 |
86
- | 0.0638 | 0.816 | 1020 | 0.0623 |
87
- | 0.0565 | 0.84 | 1050 | 0.0626 |
88
- | 0.0614 | 0.864 | 1080 | 0.0615 |
89
- | 0.063 | 0.888 | 1110 | 0.0592 |
90
- | 0.0592 | 0.912 | 1140 | 0.0618 |
91
- | 0.0687 | 0.936 | 1170 | 0.0618 |
92
- | 0.0577 | 0.96 | 1200 | 0.0600 |
93
- | 0.0629 | 0.984 | 1230 | 0.0596 |
94
-
95
-
96
- ### Framework versions
97
-
98
- - Transformers 4.42.3
99
- - Pytorch 2.3.1+cu118
100
- - Datasets 2.20.0
101
- - Tokenizers 0.19.1
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google-bert/bert-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: Google_bert-base-uncased
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/dhanishetty-personaluse/huggingface/runs/5uvs4op2)
15
+ # Google_bert-base-uncased
16
+
17
+ This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.0596
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 5e-05
39
+ - train_batch_size: 8
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - gradient_accumulation_steps: 4
43
+ - total_train_batch_size: 32
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: inverse_sqrt
46
+ - lr_scheduler_warmup_ratio: 0.1
47
+ - num_epochs: 1
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss |
52
+ |:-------------:|:-----:|:----:|:---------------:|
53
+ | 2.2234 | 0.024 | 30 | 0.9557 |
54
+ | 0.4601 | 0.048 | 60 | 0.4359 |
55
+ | 0.3149 | 0.072 | 90 | 0.2795 |
56
+ | 0.2403 | 0.096 | 120 | 0.2142 |
57
+ | 0.1876 | 0.12 | 150 | 0.1714 |
58
+ | 0.1691 | 0.144 | 180 | 0.1488 |
59
+ | 0.1394 | 0.168 | 210 | 0.1273 |
60
+ | 0.1264 | 0.192 | 240 | 0.1160 |
61
+ | 0.1113 | 0.216 | 270 | 0.1079 |
62
+ | 0.1148 | 0.24 | 300 | 0.0992 |
63
+ | 0.0995 | 0.264 | 330 | 0.0940 |
64
+ | 0.096 | 0.288 | 360 | 0.0941 |
65
+ | 0.0954 | 0.312 | 390 | 0.0854 |
66
+ | 0.089 | 0.336 | 420 | 0.0899 |
67
+ | 0.0826 | 0.36 | 450 | 0.0841 |
68
+ | 0.0872 | 0.384 | 480 | 0.0811 |
69
+ | 0.0794 | 0.408 | 510 | 0.0759 |
70
+ | 0.0756 | 0.432 | 540 | 0.0766 |
71
+ | 0.0826 | 0.456 | 570 | 0.0729 |
72
+ | 0.0841 | 0.48 | 600 | 0.0715 |
73
+ | 0.076 | 0.504 | 630 | 0.0737 |
74
+ | 0.0746 | 0.528 | 660 | 0.0691 |
75
+ | 0.0719 | 0.552 | 690 | 0.0697 |
76
+ | 0.0722 | 0.576 | 720 | 0.0673 |
77
+ | 0.0713 | 0.6 | 750 | 0.0656 |
78
+ | 0.0671 | 0.624 | 780 | 0.0652 |
79
+ | 0.0741 | 0.648 | 810 | 0.0675 |
80
+ | 0.0723 | 0.672 | 840 | 0.0663 |
81
+ | 0.0687 | 0.696 | 870 | 0.0649 |
82
+ | 0.067 | 0.72 | 900 | 0.0637 |
83
+ | 0.0623 | 0.744 | 930 | 0.0643 |
84
+ | 0.0599 | 0.768 | 960 | 0.0643 |
85
+ | 0.0686 | 0.792 | 990 | 0.0624 |
86
+ | 0.0638 | 0.816 | 1020 | 0.0623 |
87
+ | 0.0565 | 0.84 | 1050 | 0.0626 |
88
+ | 0.0614 | 0.864 | 1080 | 0.0615 |
89
+ | 0.063 | 0.888 | 1110 | 0.0592 |
90
+ | 0.0592 | 0.912 | 1140 | 0.0618 |
91
+ | 0.0687 | 0.936 | 1170 | 0.0618 |
92
+ | 0.0577 | 0.96 | 1200 | 0.0600 |
93
+ | 0.0629 | 0.984 | 1230 | 0.0596 |
94
+
95
+
96
+ ### Framework versions
97
+
98
+ - Transformers 4.42.3
99
+ - Pytorch 2.3.1+cu118
100
+ - Datasets 2.20.0
101
+ - Tokenizers 0.19.1