dhinman's picture
Upload PPO LunarLander-v2-orig trained agent
60d26f3
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7baee06bf9a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7baee06bfa30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7baee06bfac0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7baee06bfb50>", "_build": "<function ActorCriticPolicy._build at 0x7baee06bfbe0>", "forward": "<function ActorCriticPolicy.forward at 0x7baee06bfc70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7baee06bfd00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7baee06bfd90>", "_predict": "<function ActorCriticPolicy._predict at 0x7baee06bfe20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7baee06bfeb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7baee06bff40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7baee06c4040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7baf3fa54f80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694287393914717290, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIAmFj1cmze6MhWIud4xQjOGTMg5Yq6dOAAAgD8AAIA/Gn6/Pa4RhLq67Jm764gvtunZvbq7g7M6AACAPwAAgD+a1po9wrWDP0aByz1e/OC+oTlxPXVvi70AAAAAAAAAAGZiwz177pC6QtQbugRcCLWtBIC6T6k0OQAAgD8AAIA/wPOiPSS4bjzq4zM+KkUdvuk0tD0S8sw7AAAAAAAAAADAaa49KYhSuhmyCTo1CIg1QHWGOqY7H7kAAIA/AACAP5rdgjsfvf25aq+MuvCRfjXAokE7nVjutAAAgD8AAIA/mknpuikIPLryGfc5g8Nstk1SqTkFWw65AACAPwAAgD+aWX07jwIsus6r6DpqXQI2yCYrO7AUB7oAAIA/AACAP80FkryPggC4HrRoOXfWpzR0r467DXaLuAAAgD8AAIA/mlkOPOHIo7rtf9K6IJvOtVSpBLmOQfI5AACAPwAAgD/mvSo9w3EYulkoPrqm+Ti1gBZTOwb5YjkAAIA/AACAP4Brk711x30+mDbfPpxWVr6S6vM9jcCmPQAAAAAAAAAA5hV3vQO9Kz8gmPw9JDHHvkHSpjx1CU09AAAAAAAAAAAzI5k6j853uvnngju13J44qGviumc8HboAAIA/AACAP2YOOrx/Zb8/8+R4vUqcDj2dOb08U4CUvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGeKucDr7fqMAWyUTegDjAF0lEdAkOFA1aW5Y3V9lChoBkdAZP0NtqHoHWgHTegDaAhHQJDiSmbb1yx1fZQoaAZHQGKpSydFvydoB03oA2gIR0CQ4qZuQ6p6dX2UKGgGR0Bii5zNliBoaAdN6ANoCEdAkOPyjpLVWnV9lChoBkdATH7INmUW22gHS8RoCEdAkO1E56t1ZHV9lChoBkdAZPEGwA2hqWgHTegDaAhHQJDyx3KSxJN1fZQoaAZHQF2by4FzMidoB03oA2gIR0CQ9N9Oh0yQdX2UKGgGR0Bf2ibx3FDOaAdN6ANoCEdAkPjHGS6lL3V9lChoBkdAZaJEfDDTB2gHTegDaAhHQJD9kFGG21F1fZQoaAZHQBfUm2LHdXVoB0vCaAhHQJD9xfw7T2F1fZQoaAZHQGJOJCa7VaxoB03oA2gIR0CRAfJSR8txdX2UKGgGR0BkD0C/47A+aAdN6ANoCEdAkQWLKA8SwnV9lChoBkdAYs99gnc+JWgHTegDaAhHQJEexuXNTtN1fZQoaAZHQGPTTjm0VrRoB03oA2gIR0CRHu85S3spdX2UKGgGR0BoLcqaw2VFaAdN6ANoCEdAkSBypR4yGnV9lChoBkdAZCTJK8L8aWgHTegDaAhHQJEggtwrDqJ1fZQoaAZHQGSkzshPj4poB03oA2gIR0CRIbTgEU0vdX2UKGgGR0BmLEpuuRs/aAdN6ANoCEdAkSVlX3g1nHV9lChoBkdAYbodS2phnmgHTegDaAhHQJEqswlByCF1fZQoaAZHQGSuB1DBuXNoB03oA2gIR0CRK7sdkrf+dX2UKGgGR0BjVCZDzAeraAdN6ANoCEdAkS11vuPV/nV9lChoBkdAZnp6yjYZmGgHTegDaAhHQJE3249X9zh1fZQoaAZHQGGK05dWyTpoB03oA2gIR0CRQcIxxkupdX2UKGgGR0BkZfe+Eh7maAdN6ANoCEdAkUXMRcu8LHV9lChoBkdAYjNbxmTTv2gHTegDaAhHQJFLQi5d4V11fZQoaAZHQGFAwOnVG1BoB03oA2gIR0CRS4Gff4yodX2UKGgGR0BonZa3Zwn6aAdN6ANoCEdAkVAHF5v9+HV9lChoBkdAZyT6InBtUGgHTegDaAhHQJFS9XYDklx1fZQoaAZHQGDZphF3IMloB03oA2gIR0CRa9lZowmFdX2UKGgGR0BkuzGR3eN2aAdN6ANoCEdAkWwao60Y0nV9lChoBkdAZWietCAtnWgHTegDaAhHQJFuNDtw71Z1fZQoaAZHQGXNdH2AXl9oB03oA2gIR0CRbkpPAO8TdX2UKGgGR8Amftl7MPjGaAdLtWgIR0CRb7dnkDISdX2UKGgGR0BoI0OwxFiKaAdN6ANoCEdAkXADiKiwjnV9lChoBkdAX1UgLZzxPWgHTegDaAhHQJF0gKeCkGl1fZQoaAZHQEkI57w8W9FoB0ukaAhHQJF3kFINEw51fZQoaAZHQGEB0/wAlv9oB03oA2gIR0CReZo/A0sOdX2UKGgGR0BffHxSYPXkaAdN6ANoCEdAkXqbaIvalHV9lChoBkdAYMWVdHDrJWgHTegDaAhHQJF8Qi6g/Tt1fZQoaAZHQGDEo/RmbspoB03oA2gIR0CRhSk1uR9xdX2UKGgGR0Bhy1kH2RJVaAdN6ANoCEdAkYxFjurp7nV9lChoBkdAYgTM8ox59mgHTegDaAhHQJGQDfoA4n51fZQoaAZHQGOCsKLKmsNoB03oA2gIR0CRlTQ1JlJ6dX2UKGgGR0BkWQuuieunaAdN6ANoCEdAkZVxgJC0GHV9lChoBkdAXYVwDNhVl2gHTegDaAhHQJGZzDziCJ51fZQoaAZHQGGOhiTdLxtoB03oA2gIR0CRtxtKqXF+dX2UKGgGR0Bj0ZESdvsJaAdN6ANoCEdAkbdIuwosqnV9lChoBkdAZwC43m3fAWgHTegDaAhHQJG47maH9FZ1fZQoaAZHQGdODZ13dKxoB03oA2gIR0CRukUbDMvAdX2UKGgGR0Bl1Jyn1nM/aAdN6ANoCEdAkbp7r5ZbIXV9lChoBkdAZYcqy4Wk8GgHTegDaAhHQJG+ZirksBh1fZQoaAZHQGAZNpdrwfBoB03oA2gIR0CRwazSkTHsdX2UKGgGR0BhrTzXjENwaAdN6ANoCEdAkcO9Hc1wYXV9lChoBkdAYwn73wkPc2gHTegDaAhHQJHEuv1UVBV1fZQoaAZHQGa9r8Jlar5oB03oA2gIR0CRxnF3pwCKdX2UKGgGR0Bi+NstTUAlaAdN6ANoCEdAkdATOPeYUnV9lChoBkdAZJH3/xUedWgHTegDaAhHQJHaIuDjBEd1fZQoaAZHQGC27ulXRw9oB03oA2gIR0CR3fyLhrFgdX2UKGgGR0BkobPfKp1iaAdN6ANoCEdAkeLc8TzunnV9lChoBkdAY1NqEeyRjmgHTegDaAhHQJHjGeJ53Tx1fZQoaAZHQGZxDJ2dNFloB03oA2gIR0CR5yiMo+fRdX2UKGgGR0BhthVKf4ATaAdN6ANoCEdAkgB8XrMTvnV9lChoBkdAZQSff4yoGmgHTegDaAhHQJIApxNqQBB1fZQoaAZHQGJKw7tAs05oB03oA2gIR0CSAnfJmukldX2UKGgGR0Bdc2KAJ9iMaAdN6ANoCEdAkgQPrv9cbHV9lChoBkdAYQTwx33Yc2gHTegDaAhHQJIEWTyJ9Ap1fZQoaAZHQG+f1HFxXGRoB01iAWgIR0CSBvck+otMdX2UKGgGR0Bl1IBT4tYkaAdN6ANoCEdAkglSOmzjWHV9lChoBkdAYjDGEPDpDGgHTegDaAhHQJINaSvC/Gl1fZQoaAZHQGmHd9MK1G9oB03oA2gIR0CSD0X/5tWNdX2UKGgGR0Bj/yCcwxnGaAdN6ANoCEdAkhA7EUCaJHV9lChoBkdAZRSNaQmu1WgHTegDaAhHQJIR2/Firkt1fZQoaAZHQEGnfwZwXIloB0ubaAhHQJIYP/FR51N1fZQoaAZHQGad5cC5mRNoB03oA2gIR0CSGxYIBzV+dX2UKGgGR0BgTETYdyT7aAdN6ANoCEdAkiL2TgVGkXV9lChoBkdAZ2zjtG/etWgHTegDaAhHQJIm547ihnJ1fZQoaAZHQGJQlvhqCYloB03oA2gIR0CSLDTzundgdX2UKGgGR0Bi1KM72criaAdN6ANoCEdAkjD02DQJHHV9lChoBkdAb/7iI+GGmGgHTR0CaAhHQJIxiCqZML51fZQoaAZHQGI7U6o2n89oB03oA2gIR0CSPHgKF7D3dX2UKGgGR0Be9FktmL9/aAdN6ANoCEdAkjyvL9uP3nV9lChoBkdAZED6N2ki2WgHTegDaAhHQJJPbrTpgTh1fZQoaAZHQGNHoRZlnRNoB03oA2gIR0CSUH4ubqhUdX2UKGgGR0Bnog3WFvhqaAdN6ANoCEdAklCv/FR51XV9lChoBkdAYy0/B3zMA2gHTegDaAhHQJJSj1OCXhR1fZQoaAZHQGWCWaDwpfBoB03oA2gIR0CSVBhZQpF1dX2UKGgGR0BkLjIT4+KTaAdN6ANoCEdAklbZBPbfxnV9lChoBkdAZn+ANoakymgHTegDaAhHQJJYe2UjcEh1fZQoaAZHQHH2DhtLteFoB01xAWgIR0CSXrZFocrBdX2UKGgGR0BiDWYQarFPaAdN6ANoCEdAkmCb3Gn4wnV9lChoBkdAYfd5E+gUUWgHTegDaAhHQJJi3ppvgm91fZQoaAZHQGipyEDhcZ9oB03oA2gIR0CSaWP7el9CdX2UKGgGR0BkoSjBVMmGaAdN6ANoCEdAkm3e+yquKXV9lChoBkdAZgQmaYu01WgHTegDaAhHQJJz8GfPHDJ1fZQoaAZHQGC6G7z06HVoB03oA2gIR0CSeGuKGcnWdX2UKGgGR0BnU88q4H5aaAdN6ANoCEdAknj4eYD1XnV9lChoBkdAUIpETg2qDWgHS7poCEdAkn31/x2B8XV9lChoBkdAb0wrwOOKfmgHTYwDaAhHQJKATpUxVQ11fZQoaAZHQGkP8CPp6hRoB03oA2gIR0CSgjf16E8JdX2UKGgGR0BiZpHG0eEJaAdN6ANoCEdAkoPc98qnWXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}