dhmeltzer commited on
Commit
b26e911
1 Parent(s): 5cc54cb

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 215.38 +/- 38.45
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb534f93560>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb534f935f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb534f93680>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb534f93710>", "_build": "<function ActorCriticPolicy._build at 0x7fb534f937a0>", "forward": "<function ActorCriticPolicy.forward at 0x7fb534f93830>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb534f938c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb534f93950>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb534f939e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb534f93a70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb534f93b00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb534fdf690>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1667591022758316808, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObrqL1cZ3S6KPHZOhI9STb8Hf46q8L5uQAAgD8AAIA/IN+0Pt3Epr09GMG64oK0t376qb7eM8C6AACAPwAAgD8gbsA+WwH1vMY1krnr6Kc32kUbvjxssjgAAIA/AACAP6Dqgj7FDvE+nf6kPVFwTb6e+rI9MNlavAAAAAAAAAAAAJbDPdfjFTgKv1W8PAHxPKsvUbpyo1S8AACAPwAAgD9g0A4+pDVvu74gmbuLXoU5xQrbvE5nZToAAIA/AACAP5qrSr1MebU/RYmJvpdDwL2SZZ69ddLuvAAAAAAAAAAAs1AiPscLEz4CziS9ogY7vvSeFL2d2p68AAAAAAAAAABtrV++D/lvvC2vejvwT345K4LUPWvAR7oAAIA/AACAP1D6Cj9htDy+9qfkvNQCibu4iuW+XOAsvQAAAAAAAIA/s5ASPsN1DTsjZAk50jkyNvHexjzVkSW4AACAPwAAgD9NTK+9SOOdum6pZzl89y+230gQuobihLgAAIA/AACAPxpAaD36SZ4+xXEGvRK0Yb6xeP86tfJMPQAAAAAAAAAA7bkqvunFHrzmQQy6cARfuA4qlD2KchM5AACAPwAAgD+FXKG+xDyqPorUyz2yyTe+G9UvPQqairwAAAAAAAAAAOYRxD6iV9u9TOgOPXGOmLuecqq+VAi2PAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI598u+3UhV0CUhpRSlIwBbJRN6AOMAXSUR0CuICih37k5dX2UKGgGaAloD0MIV+wvuydxYUCUhpRSlGgVTegDaBZHQK4hV4Fiay91fZQoaAZoCWgPQwg9R+S7FGpvQJSGlFKUaBVNFwJoFkdArilCG5+Yt3V9lChoBmgJaA9DCEZAhSPIy2BAlIaUUpRoFU3oA2gWR0CuKV8W9DhMdX2UKGgGaAloD0MI8L4qFyqBW0CUhpRSlGgVTegDaBZHQK4qDsfJV811fZQoaAZoCWgPQwiLFwtD5JZfQJSGlFKUaBVN6ANoFkdAripScqe9SXV9lChoBmgJaA9DCJOsw9FVgl9AlIaUUpRoFU3oA2gWR0CuKs/EGZ/kdX2UKGgGaAloD0MIUpyjjo7cWECUhpRSlGgVTegDaBZHQK4tgPaL4vh1fZQoaAZoCWgPQwjWxtgJr05hQJSGlFKUaBVN6ANoFkdArjAdPi1iOXV9lChoBmgJaA9DCJxrmKHxal1AlIaUUpRoFU3oA2gWR0CuMDzqKP4mdX2UKGgGaAloD0MIyuL+I9PJNsCUhpRSlGgVTRgBaBZHQK4zL7vXsgN1fZQoaAZoCWgPQwgRV87embxlQJSGlFKUaBVN6ANoFkdArjPABRyfc3V9lChoBmgJaA9DCBaiQ+BIGV1AlIaUUpRoFU3oA2gWR0CuNvMwDeTFdX2UKGgGaAloD0MIkBZnDHPFX0CUhpRSlGgVTegDaBZHQK44+LwWnCR1fZQoaAZoCWgPQwgnhA66hPFhQJSGlFKUaBVN6ANoFkdArjm2CyyD7XV9lChoBmgJaA9DCBzTE5Z4KGFAlIaUUpRoFU3oA2gWR0CuOzocrAgxdX2UKGgGaAloD0MIWi2wx0QvYkCUhpRSlGgVTegDaBZHQK49m1YQrc11fZQoaAZoCWgPQwhtAaH18C0qwJSGlFKUaBVL6WgWR0CuQO97OVxCdX2UKGgGaAloD0MIz4HlCBkpYUCUhpRSlGgVTegDaBZHQK5CGb6P8yh1fZQoaAZoCWgPQwiyEvOsJHRiQJSGlFKUaBVN6ANoFkdArkNZWgezU3V9lChoBmgJaA9DCNZTq6+u0ltAlIaUUpRoFU3oA2gWR0CuS/y5Zr57dX2UKGgGaAloD0MIzqrP1VYcWUCUhpRSlGgVTegDaBZHQK5MHEnb7CV1fZQoaAZoCWgPQwhjtmRVhIpfQJSGlFKUaBVN6ANoFkdArk0pfQa73HV9lChoBmgJaA9DCP4sliL51mZAlIaUUpRoFU3iAmgWR0CuTYdX1anrdX2UKGgGaAloD0MIXOUJhJ3rWUCUhpRSlGgVTegDaBZHQK5NtEhq0t11fZQoaAZoCWgPQwhjnL8JhUZhQJSGlFKUaBVN6ANoFkdArlB7ELpiZ3V9lChoBmgJaA9DCPZDbLDw7GBAlIaUUpRoFU3oA2gWR0CuUzd8qnWKdX2UKGgGaAloD0MInvASnPq+XUCUhpRSlGgVTegDaBZHQK5TWZeiSJV1fZQoaAZoCWgPQwg+d4L91+EiQJSGlFKUaBVL7WgWR0CuVWeMyad+dX2UKGgGaAloD0MIXJGYoIYyYkCUhpRSlGgVTegDaBZHQK5WlAAQxvh1fZQoaAZoCWgPQwg/i6VIvvtdQJSGlFKUaBVN6ANoFkdArngHfwZwXXV9lChoBmgJaA9DCClC6nb260JAlIaUUpRoFU0PAWgWR0CuemzZg5R1dX2UKGgGaAloD0MIGlHaG3zGYECUhpRSlGgVTegDaBZHQK56vDKHO8l1fZQoaAZoCWgPQwguVWmLax9iQJSGlFKUaBVN6ANoFkdArnw1a2WpqHV9lChoBmgJaA9DCGafxyhPBGBAlIaUUpRoFU3oA2gWR0CufoZ0Syt3dX2UKGgGaAloD0MI4ltYN97JWECUhpRSlGgVTegDaBZHQK6BuAAhje91fZQoaAZoCWgPQwhqNLkYAwBfQJSGlFKUaBVN6ANoFkdAroLMzImw7nV9lChoBmgJaA9DCPHydK4o90ZAlIaUUpRoFU0HAWgWR0CugxxnWattdX2UKGgGaAloD0MIMjuL3imcYECUhpRSlGgVTegDaBZHQK6D9nRsuWd1fZQoaAZoCWgPQwjyXrUy4d9dQJSGlFKUaBVN6ANoFkdArovg/RmbsnV9lChoBmgJaA9DCJnVO9yO2WNAlIaUUpRoFU3oA2gWR0Cui/0wrUb2dX2UKGgGaAloD0MIRgiPNg4VZECUhpRSlGgVTegDaBZHQK6M61vVEux1fZQoaAZoCWgPQwi+TurL0nJfQJSGlFKUaBVN6ANoFkdAro1C3/givHV9lChoBmgJaA9DCPYNTG6UrmFAlIaUUpRoFU3oA2gWR0CukF3iBGx2dX2UKGgGaAloD0MIP5EnSdehYECUhpRSlGgVTegDaBZHQK6TAHpr1ul1fZQoaAZoCWgPQwjLK9fbZhNgQJSGlFKUaBVN6ANoFkdArpVG8yvcJ3V9lChoBmgJaA9DCDDZeLDFrmJAlIaUUpRoFU3oA2gWR0Culn83++/QdX2UKGgGaAloD0MI/3dEheooYUCUhpRSlGgVTegDaBZHQK6ZewK0D2d1fZQoaAZoCWgPQwgd5PVg0rFiQJSGlFKUaBVN6ANoFkdArpvtXA/LT3V9lChoBmgJaA9DCNV3flGCgF5AlIaUUpRoFU3oA2gWR0CunUAIIF/ydX2UKGgGaAloD0MInGwDd6ABYUCUhpRSlGgVTegDaBZHQK6fOc9W6sh1fZQoaAZoCWgPQwha9iSwuc9gQJSGlFKUaBVN6ANoFkdArqIbibUgCHV9lChoBmgJaA9DCL6G4LiMH15AlIaUUpRoFU3oA2gWR0CuoxmbsniOdX2UKGgGaAloD0MIJHzvb1DjYUCUhpRSlGgVTegDaBZHQK6jYVSGahJ1fZQoaAZoCWgPQwh2qRH6mQxgQJSGlFKUaBVN6ANoFkdArqQWM4tHx3V9lChoBmgJaA9DCHUg66nVNGZAlIaUUpRoFU3+AmgWR0CupNxIJ7b+dX2UKGgGaAloD0MI00z3OqmvIMCUhpRSlGgVTQMBaBZHQK6psUUO/cp1fZQoaAZoCWgPQwjQKcjPRsVaQJSGlFKUaBVN6ANoFkdArqq93IMjNnV9lChoBmgJaA9DCI47pYP1HWBAlIaUUpRoFU3oA2gWR0CuqtfsNUfgdX2UKGgGaAloD0MIf6Xz4VkdYECUhpRSlGgVTegDaBZHQK6ruz+FUQ11fZQoaAZoCWgPQwhS1QRR9xJYQJSGlFKUaBVN6ANoFkdArq8Si22G7HV9lChoBmgJaA9DCFLwFHIlXWBAlIaUUpRoFU3oA2gWR0Cusc3wCr93dX2UKGgGaAloD0MIujE9YYnHWECUhpRSlGgVTegDaBZHQK60MhWYF7l1fZQoaAZoCWgPQwiWI2Qgz9xbQJSGlFKUaBVN6ANoFkdArrV4kiUxEnV9lChoBmgJaA9DCOPCgZCsGmRAlIaUUpRoFU3oA2gWR0Cu1rSW7e2vdX2UKGgGaAloD0MIbO19qgrCX0CUhpRSlGgVTegDaBZHQK7ZNTcZccF1fZQoaAZoCWgPQwjEBaBRuv1eQJSGlFKUaBVN6ANoFkdArtqYhpxm03V9lChoBmgJaA9DCMx6MZSTlWFAlIaUUpRoFU3oA2gWR0Cu3PQV0tAcdX2UKGgGaAloD0MIpPyk2qd0YkCUhpRSlGgVTegDaBZHQK7hSwUQCjl1fZQoaAZoCWgPQwjdmnRbom9hQJSGlFKUaBVN6ANoFkdAruGc/yGzr3V9lChoBmgJaA9DCJKx2vy/N2JAlIaUUpRoFU3oA2gWR0Cu4mIm5UcXdX2UKGgGaAloD0MIGjbK+k3RZkCUhpRSlGgVTegDaBZHQK7jJ5zHS4R1fZQoaAZoCWgPQwgvbw7XaiM3QJSGlFKUaBVLxWgWR0Cu4zpgTh5xdX2UKGgGaAloD0MIGhajrjXEY0CUhpRSlGgVTegDaBZHQK7nqDxsl9l1fZQoaAZoCWgPQwj7eVORigdjQJSGlFKUaBVN6ANoFkdAruihB7eEZnV9lChoBmgJaA9DCJYjZCDPxWJAlIaUUpRoFU3oA2gWR0Cu6LoBzV+adX2UKGgGaAloD0MI6x9EMuSTY0CUhpRSlGgVTegDaBZHQK7pe83dbgV1fZQoaAZoCWgPQwgoKhvWVOFhQJSGlFKUaBVN6ANoFkdArux/aBZpz3V9lChoBmgJaA9DCEPjiSBON2NAlIaUUpRoFU3oA2gWR0Cu7wWkrPMTdX2UKGgGaAloD0MIhbAaS1hzZECUhpRSlGgVTegDaBZHQK7xOcriEQJ1fZQoaAZoCWgPQwjzAuyjUxlaQJSGlFKUaBVN6ANoFkdArvJvACW/rXV9lChoBmgJaA9DCOJ2aFgMAGJAlIaUUpRoFU3oA2gWR0Cu9VyksSTRdX2UKGgGaAloD0MItVGdDmTAXkCUhpRSlGgVTegDaBZHQK73/X6InBt1fZQoaAZoCWgPQwgFUmLX9udaQJSGlFKUaBVN6ANoFkdArvlr59E1EXV9lChoBmgJaA9DCHTv4ZJjM2BAlIaUUpRoFU3oA2gWR0CvAIXKB/ZvdX2UKGgGaAloD0MIZOWXwZhtYkCUhpRSlGgVTegDaBZHQK8A6XMQmNR1fZQoaAZoCWgPQwia7+AnDqRgQJSGlFKUaBVN6ANoFkdArwHQLThHb3V9lChoBmgJaA9DCJjArbt5VmNAlIaUUpRoFU3oA2gWR0CvAsblzU7TdX2UKGgGaAloD0MIAp60cFnyZUCUhpRSlGgVTegDaBZHQK8C2U1yeZp1fZQoaAZoCWgPQwgvF/GdmNU1QJSGlFKUaBVL0GgWR0CvB1itihFmdX2UKGgGaAloD0MI0jk/xXGtXECUhpRSlGgVTegDaBZHQK8H+76pHZt1fZQoaAZoCWgPQwg5JSAm4XZiQJSGlFKUaBVN6ANoFkdArwkDhBJI2HV9lChoBmgJaA9DCLWmeccpdF9AlIaUUpRoFU3oA2gWR0CvCRq/ub7TdX2UKGgGaAloD0MIILb0aKqGX0CUhpRSlGgVTegDaBZHQK8J4qRU3n91fZQoaAZoCWgPQwiEgHwJFd9eQJSGlFKUaBVN6ANoFkdArw0KZKFqSHV9lChoBmgJaA9DCL2o3a+CsmJAlIaUUpRoFU3oA2gWR0CvD6yEDhcadX2UKGgGaAloD0MIj1a1pKMENUCUhpRSlGgVTQ8BaBZHQK8RixKxs2x1fZQoaAZoCWgPQwgZraOqCYtaQJSGlFKUaBVN6ANoFkdArxHlIVdonXV9lChoBmgJaA9DCNTvwtbsn2NAlIaUUpRoFU3oA2gWR0CvEw2GIsRQdX2UKGgGaAloD0MIJjlgV5NMXECUhpRSlGgVTegDaBZHQK8WFEwWWQh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:617bb03d0e27b091765dd2e3b4f31bbfcb087ac4b65167fc9dd77ef98fde3853
3
+ size 146701
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb534f93560>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb534f935f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb534f93680>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb534f93710>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb534f937a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb534f93830>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb534f938c0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb534f93950>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb534f939e0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb534f93a70>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb534f93b00>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fb534fdf690>"
20
+ },
21
+ "verbose": 0,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 524288,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1667591022758316808,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObrqL1cZ3S6KPHZOhI9STb8Hf46q8L5uQAAgD8AAIA/IN+0Pt3Epr09GMG64oK0t376qb7eM8C6AACAPwAAgD8gbsA+WwH1vMY1krnr6Kc32kUbvjxssjgAAIA/AACAP6Dqgj7FDvE+nf6kPVFwTb6e+rI9MNlavAAAAAAAAAAAAJbDPdfjFTgKv1W8PAHxPKsvUbpyo1S8AACAPwAAgD9g0A4+pDVvu74gmbuLXoU5xQrbvE5nZToAAIA/AACAP5qrSr1MebU/RYmJvpdDwL2SZZ69ddLuvAAAAAAAAAAAs1AiPscLEz4CziS9ogY7vvSeFL2d2p68AAAAAAAAAABtrV++D/lvvC2vejvwT345K4LUPWvAR7oAAIA/AACAP1D6Cj9htDy+9qfkvNQCibu4iuW+XOAsvQAAAAAAAIA/s5ASPsN1DTsjZAk50jkyNvHexjzVkSW4AACAPwAAgD9NTK+9SOOdum6pZzl89y+230gQuobihLgAAIA/AACAPxpAaD36SZ4+xXEGvRK0Yb6xeP86tfJMPQAAAAAAAAAA7bkqvunFHrzmQQy6cARfuA4qlD2KchM5AACAPwAAgD+FXKG+xDyqPorUyz2yyTe+G9UvPQqairwAAAAAAAAAAOYRxD6iV9u9TOgOPXGOmLuecqq+VAi2PAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.04857599999999995,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI598u+3UhV0CUhpRSlIwBbJRN6AOMAXSUR0CuICih37k5dX2UKGgGaAloD0MIV+wvuydxYUCUhpRSlGgVTegDaBZHQK4hV4Fiay91fZQoaAZoCWgPQwg9R+S7FGpvQJSGlFKUaBVNFwJoFkdArilCG5+Yt3V9lChoBmgJaA9DCEZAhSPIy2BAlIaUUpRoFU3oA2gWR0CuKV8W9DhMdX2UKGgGaAloD0MI8L4qFyqBW0CUhpRSlGgVTegDaBZHQK4qDsfJV811fZQoaAZoCWgPQwiLFwtD5JZfQJSGlFKUaBVN6ANoFkdAripScqe9SXV9lChoBmgJaA9DCJOsw9FVgl9AlIaUUpRoFU3oA2gWR0CuKs/EGZ/kdX2UKGgGaAloD0MIUpyjjo7cWECUhpRSlGgVTegDaBZHQK4tgPaL4vh1fZQoaAZoCWgPQwjWxtgJr05hQJSGlFKUaBVN6ANoFkdArjAdPi1iOXV9lChoBmgJaA9DCJxrmKHxal1AlIaUUpRoFU3oA2gWR0CuMDzqKP4mdX2UKGgGaAloD0MIyuL+I9PJNsCUhpRSlGgVTRgBaBZHQK4zL7vXsgN1fZQoaAZoCWgPQwgRV87embxlQJSGlFKUaBVN6ANoFkdArjPABRyfc3V9lChoBmgJaA9DCBaiQ+BIGV1AlIaUUpRoFU3oA2gWR0CuNvMwDeTFdX2UKGgGaAloD0MIkBZnDHPFX0CUhpRSlGgVTegDaBZHQK44+LwWnCR1fZQoaAZoCWgPQwgnhA66hPFhQJSGlFKUaBVN6ANoFkdArjm2CyyD7XV9lChoBmgJaA9DCBzTE5Z4KGFAlIaUUpRoFU3oA2gWR0CuOzocrAgxdX2UKGgGaAloD0MIWi2wx0QvYkCUhpRSlGgVTegDaBZHQK49m1YQrc11fZQoaAZoCWgPQwhtAaH18C0qwJSGlFKUaBVL6WgWR0CuQO97OVxCdX2UKGgGaAloD0MIz4HlCBkpYUCUhpRSlGgVTegDaBZHQK5CGb6P8yh1fZQoaAZoCWgPQwiyEvOsJHRiQJSGlFKUaBVN6ANoFkdArkNZWgezU3V9lChoBmgJaA9DCNZTq6+u0ltAlIaUUpRoFU3oA2gWR0CuS/y5Zr57dX2UKGgGaAloD0MIzqrP1VYcWUCUhpRSlGgVTegDaBZHQK5MHEnb7CV1fZQoaAZoCWgPQwhjtmRVhIpfQJSGlFKUaBVN6ANoFkdArk0pfQa73HV9lChoBmgJaA9DCP4sliL51mZAlIaUUpRoFU3iAmgWR0CuTYdX1anrdX2UKGgGaAloD0MIXOUJhJ3rWUCUhpRSlGgVTegDaBZHQK5NtEhq0t11fZQoaAZoCWgPQwhjnL8JhUZhQJSGlFKUaBVN6ANoFkdArlB7ELpiZ3V9lChoBmgJaA9DCPZDbLDw7GBAlIaUUpRoFU3oA2gWR0CuUzd8qnWKdX2UKGgGaAloD0MInvASnPq+XUCUhpRSlGgVTegDaBZHQK5TWZeiSJV1fZQoaAZoCWgPQwg+d4L91+EiQJSGlFKUaBVL7WgWR0CuVWeMyad+dX2UKGgGaAloD0MIXJGYoIYyYkCUhpRSlGgVTegDaBZHQK5WlAAQxvh1fZQoaAZoCWgPQwg/i6VIvvtdQJSGlFKUaBVN6ANoFkdArngHfwZwXXV9lChoBmgJaA9DCClC6nb260JAlIaUUpRoFU0PAWgWR0CuemzZg5R1dX2UKGgGaAloD0MIGlHaG3zGYECUhpRSlGgVTegDaBZHQK56vDKHO8l1fZQoaAZoCWgPQwguVWmLax9iQJSGlFKUaBVN6ANoFkdArnw1a2WpqHV9lChoBmgJaA9DCGafxyhPBGBAlIaUUpRoFU3oA2gWR0CufoZ0Syt3dX2UKGgGaAloD0MI4ltYN97JWECUhpRSlGgVTegDaBZHQK6BuAAhje91fZQoaAZoCWgPQwhqNLkYAwBfQJSGlFKUaBVN6ANoFkdAroLMzImw7nV9lChoBmgJaA9DCPHydK4o90ZAlIaUUpRoFU0HAWgWR0CugxxnWattdX2UKGgGaAloD0MIMjuL3imcYECUhpRSlGgVTegDaBZHQK6D9nRsuWd1fZQoaAZoCWgPQwjyXrUy4d9dQJSGlFKUaBVN6ANoFkdArovg/RmbsnV9lChoBmgJaA9DCJnVO9yO2WNAlIaUUpRoFU3oA2gWR0Cui/0wrUb2dX2UKGgGaAloD0MIRgiPNg4VZECUhpRSlGgVTegDaBZHQK6M61vVEux1fZQoaAZoCWgPQwi+TurL0nJfQJSGlFKUaBVN6ANoFkdAro1C3/givHV9lChoBmgJaA9DCPYNTG6UrmFAlIaUUpRoFU3oA2gWR0CukF3iBGx2dX2UKGgGaAloD0MIP5EnSdehYECUhpRSlGgVTegDaBZHQK6TAHpr1ul1fZQoaAZoCWgPQwjLK9fbZhNgQJSGlFKUaBVN6ANoFkdArpVG8yvcJ3V9lChoBmgJaA9DCDDZeLDFrmJAlIaUUpRoFU3oA2gWR0Culn83++/QdX2UKGgGaAloD0MI/3dEheooYUCUhpRSlGgVTegDaBZHQK6ZewK0D2d1fZQoaAZoCWgPQwgd5PVg0rFiQJSGlFKUaBVN6ANoFkdArpvtXA/LT3V9lChoBmgJaA9DCNV3flGCgF5AlIaUUpRoFU3oA2gWR0CunUAIIF/ydX2UKGgGaAloD0MInGwDd6ABYUCUhpRSlGgVTegDaBZHQK6fOc9W6sh1fZQoaAZoCWgPQwha9iSwuc9gQJSGlFKUaBVN6ANoFkdArqIbibUgCHV9lChoBmgJaA9DCL6G4LiMH15AlIaUUpRoFU3oA2gWR0CuoxmbsniOdX2UKGgGaAloD0MIJHzvb1DjYUCUhpRSlGgVTegDaBZHQK6jYVSGahJ1fZQoaAZoCWgPQwh2qRH6mQxgQJSGlFKUaBVN6ANoFkdArqQWM4tHx3V9lChoBmgJaA9DCHUg66nVNGZAlIaUUpRoFU3+AmgWR0CupNxIJ7b+dX2UKGgGaAloD0MI00z3OqmvIMCUhpRSlGgVTQMBaBZHQK6psUUO/cp1fZQoaAZoCWgPQwjQKcjPRsVaQJSGlFKUaBVN6ANoFkdArqq93IMjNnV9lChoBmgJaA9DCI47pYP1HWBAlIaUUpRoFU3oA2gWR0CuqtfsNUfgdX2UKGgGaAloD0MIf6Xz4VkdYECUhpRSlGgVTegDaBZHQK6ruz+FUQ11fZQoaAZoCWgPQwhS1QRR9xJYQJSGlFKUaBVN6ANoFkdArq8Si22G7HV9lChoBmgJaA9DCFLwFHIlXWBAlIaUUpRoFU3oA2gWR0Cusc3wCr93dX2UKGgGaAloD0MIujE9YYnHWECUhpRSlGgVTegDaBZHQK60MhWYF7l1fZQoaAZoCWgPQwiWI2Qgz9xbQJSGlFKUaBVN6ANoFkdArrV4kiUxEnV9lChoBmgJaA9DCOPCgZCsGmRAlIaUUpRoFU3oA2gWR0Cu1rSW7e2vdX2UKGgGaAloD0MIbO19qgrCX0CUhpRSlGgVTegDaBZHQK7ZNTcZccF1fZQoaAZoCWgPQwjEBaBRuv1eQJSGlFKUaBVN6ANoFkdArtqYhpxm03V9lChoBmgJaA9DCMx6MZSTlWFAlIaUUpRoFU3oA2gWR0Cu3PQV0tAcdX2UKGgGaAloD0MIpPyk2qd0YkCUhpRSlGgVTegDaBZHQK7hSwUQCjl1fZQoaAZoCWgPQwjdmnRbom9hQJSGlFKUaBVN6ANoFkdAruGc/yGzr3V9lChoBmgJaA9DCJKx2vy/N2JAlIaUUpRoFU3oA2gWR0Cu4mIm5UcXdX2UKGgGaAloD0MIGjbK+k3RZkCUhpRSlGgVTegDaBZHQK7jJ5zHS4R1fZQoaAZoCWgPQwgvbw7XaiM3QJSGlFKUaBVLxWgWR0Cu4zpgTh5xdX2UKGgGaAloD0MIGhajrjXEY0CUhpRSlGgVTegDaBZHQK7nqDxsl9l1fZQoaAZoCWgPQwj7eVORigdjQJSGlFKUaBVN6ANoFkdAruihB7eEZnV9lChoBmgJaA9DCJYjZCDPxWJAlIaUUpRoFU3oA2gWR0Cu6LoBzV+adX2UKGgGaAloD0MI6x9EMuSTY0CUhpRSlGgVTegDaBZHQK7pe83dbgV1fZQoaAZoCWgPQwgoKhvWVOFhQJSGlFKUaBVN6ANoFkdArux/aBZpz3V9lChoBmgJaA9DCEPjiSBON2NAlIaUUpRoFU3oA2gWR0Cu7wWkrPMTdX2UKGgGaAloD0MIhbAaS1hzZECUhpRSlGgVTegDaBZHQK7xOcriEQJ1fZQoaAZoCWgPQwjzAuyjUxlaQJSGlFKUaBVN6ANoFkdArvJvACW/rXV9lChoBmgJaA9DCOJ2aFgMAGJAlIaUUpRoFU3oA2gWR0Cu9VyksSTRdX2UKGgGaAloD0MItVGdDmTAXkCUhpRSlGgVTegDaBZHQK73/X6InBt1fZQoaAZoCWgPQwgFUmLX9udaQJSGlFKUaBVN6ANoFkdArvlr59E1EXV9lChoBmgJaA9DCHTv4ZJjM2BAlIaUUpRoFU3oA2gWR0CvAIXKB/ZvdX2UKGgGaAloD0MIZOWXwZhtYkCUhpRSlGgVTegDaBZHQK8A6XMQmNR1fZQoaAZoCWgPQwia7+AnDqRgQJSGlFKUaBVN6ANoFkdArwHQLThHb3V9lChoBmgJaA9DCJjArbt5VmNAlIaUUpRoFU3oA2gWR0CvAsblzU7TdX2UKGgGaAloD0MIAp60cFnyZUCUhpRSlGgVTegDaBZHQK8C2U1yeZp1fZQoaAZoCWgPQwgvF/GdmNU1QJSGlFKUaBVL0GgWR0CvB1itihFmdX2UKGgGaAloD0MI0jk/xXGtXECUhpRSlGgVTegDaBZHQK8H+76pHZt1fZQoaAZoCWgPQwg5JSAm4XZiQJSGlFKUaBVN6ANoFkdArwkDhBJI2HV9lChoBmgJaA9DCLWmeccpdF9AlIaUUpRoFU3oA2gWR0CvCRq/ub7TdX2UKGgGaAloD0MIILb0aKqGX0CUhpRSlGgVTegDaBZHQK8J4qRU3n91fZQoaAZoCWgPQwiEgHwJFd9eQJSGlFKUaBVN6ANoFkdArw0KZKFqSHV9lChoBmgJaA9DCL2o3a+CsmJAlIaUUpRoFU3oA2gWR0CvD6yEDhcadX2UKGgGaAloD0MIj1a1pKMENUCUhpRSlGgVTQ8BaBZHQK8RixKxs2x1fZQoaAZoCWgPQwgZraOqCYtaQJSGlFKUaBVN6ANoFkdArxHlIVdonXV9lChoBmgJaA9DCNTvwtbsn2NAlIaUUpRoFU3oA2gWR0CvEw2GIsRQdX2UKGgGaAloD0MIJjlgV5NMXECUhpRSlGgVTegDaBZHQK8WFEwWWQh1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 160,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed170e411078e8fa1ebe5d70d47c8f8127ed2fbb3383293dabb2d954fb76dd2b
3
+ size 87545
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d3d205fbb444431ee903e93de6196de1d7cd746ff004bd4e5ca7b00f545abb3
3
+ size 43073
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.7.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: False
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (245 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 215.3840096253645, "std_reward": 38.4467598338393, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-04T20:00:14.131227"}