dhmeltzer commited on
Commit
cebb7eb
1 Parent(s): 638b31c

RL_CourseV2, unit1, Lunarlander

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 254.42 +/- 16.17
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 255.08 +/- 20.36
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2e83104cb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2e83104d40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2e83104dd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2e83104e60>", "_build": "<function ActorCriticPolicy._build at 0x7f2e83104ef0>", "forward": "<function ActorCriticPolicy.forward at 0x7f2e83104f80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2e8310b050>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2e8310b0e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2e8310b170>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2e8310b200>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2e8310b290>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2e831586c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1667592576474882472, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADVgjb7+uVs/YoSwPMt+i77Cew++fVfjPQAAAAAAAAAAGh6gPa4PgLo3XCq4f3yls0HuaDtidEM3AACAPwAAgD9GuwC+pPsJu3I8kbQ1awqytxm0O/ivpzMAAIA/AACAP+ZLAj32zHW6vGGzOLEZgzPHhzi7xlvRtwAAgD8AAIA/AJ5MvdIYh7ueWWE95Sz2PFFk7jyeT829AACAPwAAgD9apLM9FGyVuiNDOLnZkLY1YB2bOGiZVDgAAIA/AAAAAJqtTzyFA7S5tXPPus0E07JNq8g6G/jxOQAAgD8AAIA/JjyDPQu2+j25qqC9x+livpBiAb23Cyw9AAAAAAAAAAAA0Kq6XBdPukdwjrs7KtW2QNMGO/IuozoAAIA/AACAP00JLj1c82C6zVnYufcUqrRmFLu6oyz+OAAAgD8AAIA/zb5rPfbMHroe8Fy5EJeJtItejDvVnIE4AACAPwAAgD+aCcK8wwkpugsilbqABle1DaC5OpK6qzkAAIA/AACAP2ZvJj2u5/K4iSwROY3EZLP9U667u9ktuAAAgD8AAIA/moFuPLBdtz+VR1g+j0C/Pd3OdjwGECo+AAAAAAAAAACzIQA9KQBEuti9erqXjYO1arHdOtKSkzkAAIA/AACAP+arMz1ce2y64ciiOonz8zU1pT47cEu9uQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4zeFlQqcYkCUhpRSlIwBbJRN6AOMAXSUR0CQu2VIqbz9dX2UKGgGaAloD0MIXWqEfqa1X0CUhpRSlGgVTegDaBZHQJC775XU6Pt1fZQoaAZoCWgPQwgYey++6NZgQJSGlFKUaBVN6ANoFkdAkL9bsv7FbXV9lChoBmgJaA9DCKfria4Lb05AlIaUUpRoFUv1aBZHQJDBBi2Dxsl1fZQoaAZoCWgPQwjj3ZGx2nhNQJSGlFKUaBVNHgFoFkdAkMOIL1EmY3V9lChoBmgJaA9DCGPshJfgkGRAlIaUUpRoFU3oA2gWR0CQxZA1ejVQdX2UKGgGaAloD0MIw35PrNP4ZkCUhpRSlGgVTegDaBZHQJDJAZ4wAVB1fZQoaAZoCWgPQwiHTWTmAh9aQJSGlFKUaBVN6ANoFkdAkNRrcj7hvXV9lChoBmgJaA9DCGh6ibFMy11AlIaUUpRoFU3oA2gWR0CQ1KtgrpaBdX2UKGgGaAloD0MIzVoKSHuNZkCUhpRSlGgVTegDaBZHQJDVwvRJEpl1fZQoaAZoCWgPQwiRup19ZVhkQJSGlFKUaBVN6ANoFkdAkN5HU2DQJHV9lChoBmgJaA9DCLUWZqGdaF5AlIaUUpRoFU3oA2gWR0CQ4Exm03OwdX2UKGgGaAloD0MIx5v8Fp3xX0CUhpRSlGgVTegDaBZHQJDjHNA1Nxl1fZQoaAZoCWgPQwjFAfT7frdgQJSGlFKUaBVN6ANoFkdAkObTKs+3Y3V9lChoBmgJaA9DCLhbkgP2KGNAlIaUUpRoFU3oA2gWR0CQ67hd+ocadX2UKGgGaAloD0MIfJqTFxmkY0CUhpRSlGgVTegDaBZHQJDuDvttygh1fZQoaAZoCWgPQwg+PbZlQHlgQJSGlFKUaBVN6ANoFkdAkPVIXO4XoHV9lChoBmgJaA9DCOza3m7JXGRAlIaUUpRoFU3oA2gWR0CQ9dky1uzhdX2UKGgGaAloD0MI+rmhKbt0ZUCUhpRSlGgVTegDaBZHQJD5XShJyyV1fZQoaAZoCWgPQwjyI37FmjxnQJSGlFKUaBVN6ANoFkdAkPsS925hB3V9lChoBmgJaA9DCMU9lj50YGNAlIaUUpRoFU3oA2gWR0CQ/XFWn0kGdX2UKGgGaAloD0MIeJeL+M6LYkCUhpRSlGgVTegDaBZHQJD/hQ0oBq91fZQoaAZoCWgPQwj/WfPjL/NjQJSGlFKUaBVN6ANoFkdAkQLnB+F10XV9lChoBmgJaA9DCAEZOnbQuWBAlIaUUpRoFU3oA2gWR0CRDWaMJhOQdX2UKGgGaAloD0MIeCXJc/0eYkCUhpRSlGgVTegDaBZHQJENqeg+Qlt1fZQoaAZoCWgPQwjrjO+LS9UEQJSGlFKUaBVLx2gWR0CRDhx/ustDdX2UKGgGaAloD0MIOiS1ULK5YUCUhpRSlGgVTegDaBZHQJEOssYl6Z91fZQoaAZoCWgPQwjmyTUFMsRlQJSGlFKUaBVN6ANoFkdAkRbGWUr08XV9lChoBmgJaA9DCECEuHL2oWRAlIaUUpRoFU3oA2gWR0CRGKm+CbtrdX2UKGgGaAloD0MIPDHrxVD5YkCUhpRSlGgVTegDaBZHQJEbKHi3ocJ1fZQoaAZoCWgPQwg09bpF4GhmQJSGlFKUaBVN6ANoFkdAkR5YqslsxnV9lChoBmgJaA9DCINQ3sfRmWZAlIaUUpRoFU3oA2gWR0CRIvsP8Q7LdX2UKGgGaAloD0MI4srZOyNTaECUhpRSlGgVTegDaBZHQJElvTXrdFh1fZQoaAZoCWgPQwgofSHkvCxoQJSGlFKUaBVN6ANoFkdAkVtCsbNr03V9lChoBmgJaA9DCOmayTfbN1tAlIaUUpRoFU3oA2gWR0CRW+SrHU+cdX2UKGgGaAloD0MILXdmguHAYkCUhpRSlGgVTegDaBZHQJFfx70Fr2x1fZQoaAZoCWgPQwho5sk1BdVgQJSGlFKUaBVN6ANoFkdAkWGbZvkzXXV9lChoBmgJaA9DCDXwoxp2FmJAlIaUUpRoFU3oA2gWR0CRZDX0Gu9wdX2UKGgGaAloD0MI0nKgh9q+YUCUhpRSlGgVTegDaBZHQJFmC2PT5O91fZQoaAZoCWgPQwjF4jeFFflkQJSGlFKUaBVN6ANoFkdAkXN75mAbynV9lChoBmgJaA9DCNOjqZ7MHWFAlIaUUpRoFU3oA2gWR0CRc7iWVu76dX2UKGgGaAloD0MIjxmojP8eYkCUhpRSlGgVTegDaBZHQJF0JeWv8qF1fZQoaAZoCWgPQwiBkgIL4HFiQJSGlFKUaBVN6ANoFkdAkXSxRZU1h3V9lChoBmgJaA9DCADICRNGW11AlIaUUpRoFU3oA2gWR0CRfKz+3pfQdX2UKGgGaAloD0MIAJF++7p9YUCUhpRSlGgVTegDaBZHQJF+ZDlYEGJ1fZQoaAZoCWgPQwh4f7xXLX1mQJSGlFKUaBVN6ANoFkdAkYCyI+GGmHV9lChoBmgJaA9DCONUa2EWm29AlIaUUpRoFU3QAmgWR0CRgwJW/8EWdX2UKGgGaAloD0MIK2wGuKBHYECUhpRSlGgVTegDaBZHQJGDrH+6y0N1fZQoaAZoCWgPQwgHYtnMIVFhQJSGlFKUaBVN6ANoFkdAkYe4SYgJTnV9lChoBmgJaA9DCGVUGcZdFmVAlIaUUpRoFU3oA2gWR0CRia+10DEFdX2UKGgGaAloD0MIDhZO0vxFYkCUhpRSlGgVTegDaBZHQJGQBXRw6yV1fZQoaAZoCWgPQwiXAz3Utq5iQJSGlFKUaBVN6ANoFkdAkZPTh99c8nV9lChoBmgJaA9DCKcFL/oK5GVAlIaUUpRoFU3oA2gWR0CRlVqIacZtdX2UKGgGaAloD0MIH/KWq5/TYkCUhpRSlGgVTegDaBZHQJGXnUvwmVt1fZQoaAZoCWgPQwja5Vsf1h1nQJSGlFKUaBVN6ANoFkdAkZloDDCP63V9lChoBmgJaA9DCMr+eRqwr2ZAlIaUUpRoFU3oA2gWR0CRp1GRV6u5dX2UKGgGaAloD0MIQpdw6K33YkCUhpRSlGgVTegDaBZHQJGnlStNi6R1fZQoaAZoCWgPQwhqatla30pnQJSGlFKUaBVN6ANoFkdAkagN5Qgs9XV9lChoBmgJaA9DCPqcu10v82RAlIaUUpRoFU3oA2gWR0CRqJfms/6gdX2UKGgGaAloD0MIEaeTbPW/cUCUhpRSlGgVTewCaBZHQJGqTY4ACGN1fZQoaAZoCWgPQwhh/DTuzVdkQJSGlFKUaBVN6ANoFkdAkbAxouf29XV9lChoBmgJaA9DCJQT7Sqk/2ZAlIaUUpRoFU3oA2gWR0CRsfuW8h9tdX2UKGgGaAloD0MID9O+uT9YZkCUhpRSlGgVTegDaBZHQJG0erLhaTx1fZQoaAZoCWgPQwgpeXWOAZJjQJSGlFKUaBVN6ANoFkdAkbcvReC04XV9lChoBmgJaA9DCMHkRpG1AF5AlIaUUpRoFU3oA2gWR0CRvM0/4ZdfdX2UKGgGaAloD0MIx3+BIMBkY0CUhpRSlGgVTegDaBZHQJG/QM1CPZJ1fZQoaAZoCWgPQwiEYito2s9iQJSGlFKUaBVN6ANoFkdAkcaXMINVinV9lChoBmgJaA9DCE/qy9LOyWBAlIaUUpRoFU3oA2gWR0CR+imhdt2tdX2UKGgGaAloD0MIglSKHQ1KYUCUhpRSlGgVTegDaBZHQJH8Fb4agmJ1fZQoaAZoCWgPQwgbgXhdv49eQJSGlFKUaBVN6ANoFkdAkf6/k3juKHV9lChoBmgJaA9DCAu3fCQltGdAlIaUUpRoFU3oA2gWR0CSAL4ubqhUdX2UKGgGaAloD0MIrRdDOdEvZ0CUhpRSlGgVTegDaBZHQJIP08YAKfF1fZQoaAZoCWgPQwh80okE06lkQJSGlFKUaBVN6ANoFkdAkhAV+y7f53V9lChoBmgJaA9DCIMXfQVpT2FAlIaUUpRoFU3oA2gWR0CSEIgL7XQMdX2UKGgGaAloD0MIQ1n4+tryZUCUhpRSlGgVTegDaBZHQJIRDmyPdVN1fZQoaAZoCWgPQwhpccYwJ4hjQJSGlFKUaBVN6ANoFkdAkhK5EhJRO3V9lChoBmgJaA9DCCJVFK+y82NAlIaUUpRoFU3oA2gWR0CSGGucMEzPdX2UKGgGaAloD0MIHZPF/cdVZkCUhpRSlGgVTegDaBZHQJIaAdkrf+F1fZQoaAZoCWgPQwjq6Lga2RZkQJSGlFKUaBVN6ANoFkdAkhxEAxSHd3V9lChoBmgJaA9DCM6N6QlLjWFAlIaUUpRoFU3oA2gWR0CSHpxp+MIedX2UKGgGaAloD0MIKcsQx7oKZUCUhpRSlGgVTegDaBZHQJIjl7kXDWN1fZQoaAZoCWgPQwiu00hL5bpgQJSGlFKUaBVN6ANoFkdAkiW1zU7SzHV9lChoBmgJaA9DCPmGwmdrJ2RAlIaUUpRoFU3oA2gWR0CSLK0BwMpgdX2UKGgGaAloD0MI7bsi+N8qZUCUhpRSlGgVTegDaBZHQJIxB5IH1OF1fZQoaAZoCWgPQwjW4lMAjGJhQJSGlFKUaBVN6ANoFkdAkjLf8Q7LdXV9lChoBmgJaA9DCCi37XvUWmJAlIaUUpRoFU3oA2gWR0CSNUfEGZ/kdX2UKGgGaAloD0MIHXIz3ICUZECUhpRSlGgVTegDaBZHQJI3F7hNucd1fZQoaAZoCWgPQwiMuWsJ+ZdhQJSGlFKUaBVN6ANoFkdAkkUM3AEdNnV9lChoBmgJaA9DCE95dCOsU2JAlIaUUpRoFU3oA2gWR0CSRUjEehf0dX2UKGgGaAloD0MIcvikEwnTZUCUhpRSlGgVTegDaBZHQJJFuYfGMn91fZQoaAZoCWgPQwiNYrml1TlYQJSGlFKUaBVN6ANoFkdAkkY6LXL/0nV9lChoBmgJaA9DCIB9dOrKH2VAlIaUUpRoFU3oA2gWR0CSR792X9iudX2UKGgGaAloD0MImN2Th4XQZUCUhpRSlGgVTegDaBZHQJJOQow22oh1fZQoaAZoCWgPQwj5MeaupX9iQJSGlFKUaBVN6ANoFkdAklCoGlhw2nV9lChoBmgJaA9DCAxXB0DcfWRAlIaUUpRoFU3oA2gWR0CSU89du5z6dX2UKGgGaAloD0MIl1ZD4h5+ZECUhpRSlGgVTegDaBZHQJJXK8f3evZ1fZQoaAZoCWgPQwgZWMfxQwJkQJSGlFKUaBVN6ANoFkdAkl5uP/7zkXV9lChoBmgJaA9DCOvhy0SRGWVAlIaUUpRoFU3oA2gWR0CSYb5+YtxudX2UKGgGaAloD0MI28TJ/Q7+ZkCUhpRSlGgVTegDaBZHQJJsCCK77Kt1fZQoaAZoCWgPQwhGJuDXSEtjQJSGlFKUaBVN6ANoFkdAknBQNsnAqXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 155, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f36d21ba0d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f36d21ba160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f36d21ba1f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f36d21ba280>", "_build": "<function ActorCriticPolicy._build at 0x7f36d21ba310>", "forward": "<function ActorCriticPolicy.forward at 0x7f36d21ba3a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f36d21ba430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f36d21ba4c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f36d21ba550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f36d21ba5e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f36d21ba670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f36d21ba700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f36d21b7390>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1048576, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675044646967429776, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABoVPb325Eu69TJNs7ntErA9rZA7/KG9MwAAgD8AAIA/ALK7PfU3UT9+ubA82p/evraURD01bM+8AAAAAAAAAABNq2a9uAa7uVhLGjiNowwzRheCOqpYNbcAAIA/AACAPw1mxL2qPog/olcOvmXp4b6eTL29xjRjvQAAAAAAAAAAzUMJPQxhtT8j3bM+cGGdvYP0GDwA3M49AAAAAAAAAABznLS9H1XSuQ9imDvLCq82Bn8PO5a5sLoAAIA/AACAP9qz/T2IDP4+J9YYPdcC3r5AYhE+gAT9PAAAAAAAAAAAmu2Xu8J8sz8Yc/C+cWnFvt9DsDub3Nk9AAAAAAAAAABAe9Q9PfoNOmdFH7QThJuvQ4R4u/KsrDMAAIA/AACAPxouO73DuS26Mf28NJFv5K7BuRG6w0JcswAAgD8AAIA/oAEHvhTMpLr9P2M+InA7vAm4073b/jo+AACAPwAAgD9zeQ6+SIjnOxsRpDxVkSG7QQVJvZiWFDwAAIA/AACAP5riSz3DGSu6vDDJu+osLDh7abs6oFHQNgAAgD8AAIA/GkKmPfaoZroQkjG7ANKXOMle+zqq/Qi4AACAPwAAgD8zbcO9ZlecP+OKVL7cAee+2c7rvYHCB7sAAAAAAAAAACAfUj4I9uK8zsWEOwRAD7rgqki+S/ixugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAABAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDR07qERPYkCUhpRSlIwBbJRN6AOMAXSUR0CbW+AAAAAAdX2UKGgGaAloD0MISYEFMGWJYUCUhpRSlGgVTegDaBZHQJtcDTlT3qR1fZQoaAZoCWgPQwjw+sxZn/BlQJSGlFKUaBVN6ANoFkdAm2M/ZmI0qHV9lChoBmgJaA9DCB+duvJZhGJAlIaUUpRoFU3oA2gWR0CbY5YXfqHHdX2UKGgGaAloD0MI7Zv7q0f3ZUCUhpRSlGgVTegDaBZHQJtthBSk0rN1fZQoaAZoCWgPQwhSYWwhSKpxQJSGlFKUaBVNzgJoFkdAm23ze9Ba93V9lChoBmgJaA9DCLB0PjxLYWFAlIaUUpRoFU3oA2gWR0CbdHa24NI9dX2UKGgGaAloD0MIPQrXo/AQYUCUhpRSlGgVTegDaBZHQJt6aB9Tgl51fZQoaAZoCWgPQwhHyatzDL1lQJSGlFKUaBVN6ANoFkdAm4JJgssg+3V9lChoBmgJaA9DCOONzCP/q2NAlIaUUpRoFU3oA2gWR0Cbgt75VOsUdX2UKGgGaAloD0MIrvGZ7B+bYkCUhpRSlGgVTegDaBZHQJuFwUYbbUR1fZQoaAZoCWgPQwjUtmEUBNFdQJSGlFKUaBVN6ANoFkdAm4ZEH2RJVnV9lChoBmgJaA9DCHv4MlGEe2VAlIaUUpRoFU3oA2gWR0CbimP8Q7LddX2UKGgGaAloD0MIs7eU88XER0CUhpRSlGgVTegDaBZHQJuMk4yXUpd1fZQoaAZoCWgPQwhx6C0e3jdjQJSGlFKUaBVN6ANoFkdAm46GwiaAnXV9lChoBmgJaA9DCJd1/1gIV2JAlIaUUpRoFU3oA2gWR0CbjosHjZL7dX2UKGgGaAloD0MI53EYzN/3Y0CUhpRSlGgVTegDaBZHQJuR901ZTyd1fZQoaAZoCWgPQwhaZhGKrTZUQJSGlFKUaBVN6ANoFkdAm5IoqTbFj3V9lChoBmgJaA9DCHIycaugn2NAlIaUUpRoFU3oA2gWR0CbmkGu9vjwdX2UKGgGaAloD0MI4NqJkpCcY0CUhpRSlGgVTegDaBZHQJuaoppeu3d1fZQoaAZoCWgPQwgHJ6JfWwpeQJSGlFKUaBVN6ANoFkdAm6UUtAcDKnV9lChoBmgJaA9DCJ4Hd2fte2RAlIaUUpRoFU3oA2gWR0CbpYARkEs8dX2UKGgGaAloD0MIa7ddaK63XkCUhpRSlGgVTegDaBZHQJurgXenAIp1fZQoaAZoCWgPQwgLYwtBju9iQJSGlFKUaBVN6ANoFkdAm7FJnL7oCHV9lChoBmgJaA9DCBOaJJYUQW5AlIaUUpRoFU0rA2gWR0CbtqK8tf5UdX2UKGgGaAloD0MIXWqEfiZ8Y0CUhpRSlGgVTegDaBZHQJx1rIT4+KV1fZQoaAZoCWgPQwhBZJEmXnBiQJSGlFKUaBVN6ANoFkdAnHY84HX2/XV9lChoBmgJaA9DCOaWVkNi6m9AlIaUUpRoFU02AmgWR0CcdyhcJMQFdX2UKGgGaAloD0MIiPTb14GXXUCUhpRSlGgVTegDaBZHQJx4+foRqXZ1fZQoaAZoCWgPQwikUuxonLtiQJSGlFKUaBVN6ANoFkdAnHltRBNVR3V9lChoBmgJaA9DCJWAmISLVWNAlIaUUpRoFU3oA2gWR0CcfxC8OCoTdX2UKGgGaAloD0MIy54ENievcUCUhpRSlGgVTd8CaBZHQJx/1SaVlf91fZQoaAZoCWgPQwgCSdi3k/djQJSGlFKUaBVN6ANoFkdAnIDs6eXiSHV9lChoBmgJaA9DCOQybmogYWNAlIaUUpRoFU3oA2gWR0CcgPAZbY9QdX2UKGgGaAloD0MIH0dzZOVxZECUhpRSlGgVTegDaBZHQJyD+SvC/Gl1fZQoaAZoCWgPQwhjC0EOyuZjQJSGlFKUaBVN6ANoFkdAnIQm8mKIi3V9lChoBmgJaA9DCI4fKo0YpHBAlIaUUpRoFU2WAmgWR0CciikVN5+pdX2UKGgGaAloD0MIA0NWt7qvc0CUhpRSlGgVTXABaBZHQJyR4PpY9xJ1fZQoaAZoCWgPQwjTE5Z4QEFlQJSGlFKUaBVN6ANoFkdAnJTA6ltTDXV9lChoBmgJaA9DCCuE1VhC7WRAlIaUUpRoFU3oA2gWR0CclSIl+mWMdX2UKGgGaAloD0MIDr+bbtnUb0CUhpRSlGgVTW4DaBZHQJydYwVTJhh1fZQoaAZoCWgPQwgwoYLDi4phQJSGlFKUaBVN6ANoFkdAnJ7b7O3UhHV9lChoBmgJaA9DCFQe3QjLvHBAlIaUUpRoFU3cAmgWR0CcoVFaSs8xdX2UKGgGaAloD0MIJAot6/5bcUCUhpRSlGgVTQUBaBZHQJyharo4dZJ1fZQoaAZoCWgPQwgC1T+IZLlgQJSGlFKUaBVN6ANoFkdAnKUqVt4zJ3V9lChoBmgJaA9DCG5qoPmcNGRAlIaUUpRoFU3oA2gWR0CcpaKVpsXSdX2UKGgGaAloD0MIYaku4OUZYkCUhpRSlGgVTegDaBZHQJymcL2HtWx1fZQoaAZoCWgPQwgAdQMFXpVkQJSGlFKUaBVN6ANoFkdAnKfnbuc+aHV9lChoBmgJaA9DCB9Hc2TlNmZAlIaUUpRoFU3oA2gWR0CcqEQd0aIfdX2UKGgGaAloD0MIVDiCVAqeZUCUhpRSlGgVTegDaBZHQJytxthuwX91fZQoaAZoCWgPQwgI5X0czQ9lQJSGlFKUaBVN6ANoFkdAnK7kJWvKU3V9lChoBmgJaA9DCPGeA8sRmG9AlIaUUpRoFU1PA2gWR0CcsV1KGtZFdX2UKGgGaAloD0MIcnDpmHOOYkCUhpRSlGgVTegDaBZHQJyyUkyDZlF1fZQoaAZoCWgPQwg4gem07l5lQJSGlFKUaBVN6ANoFkdAnLKLL+xW1nV9lChoBmgJaA9DCNwQ4zWvg2JAlIaUUpRoFU3oA2gWR0Ccwbbi6xxDdX2UKGgGaAloD0MIAWvVrgn9TkCUhpRSlGgVTegDaBZHQJzFJ6nivPl1fZQoaAZoCWgPQwgA4xk09PBoQJSGlFKUaBVN6ANoFkdAnM93tOVPe3V9lChoBmgJaA9DCLLV5ZQAi2RAlIaUUpRoFU3oA2gWR0Cc0SSl3yI6dX2UKGgGaAloD0MI1LmilBDCYECUhpRSlGgVTegDaBZHQJzT31DjR2N1fZQoaAZoCWgPQwiIad/cX0hkQJSGlFKUaBVN6ANoFkdAnNP84gieNHV9lChoBmgJaA9DCAjJAiZwVmJAlIaUUpRoFU3oA2gWR0Cc2B88cMmXdX2UKGgGaAloD0MImSoYldRvYECUhpRSlGgVTegDaBZHQJzYnpaA4GV1fZQoaAZoCWgPQwgiADj27EFiQJSGlFKUaBVN6ANoFkdAnNltrGipN3V9lChoBmgJaA9DCA4tsp1vPWVAlIaUUpRoFU3oA2gWR0Cc2wD2JzkqdX2UKGgGaAloD0MI5IbfTbcKaUCUhpRSlGgVTegDaBZHQJzbZbW3BpJ1fZQoaAZoCWgPQwi/RSdLLVljQJSGlFKUaBVN6ANoFkdAnOGUkSmIkHV9lChoBmgJaA9DCN9OIsK/+2NAlIaUUpRoFU3oA2gWR0Cc4q04iosJdX2UKGgGaAloD0MISBXFqyw/ZUCUhpRSlGgVTegDaBZHQJzlJrLyMDR1fZQoaAZoCWgPQwi7YduiTEdiQJSGlFKUaBVN6ANoFkdAnOYkGiYb83V9lChoBmgJaA9DCJp8s82NUGJAlIaUUpRoFU3oA2gWR0Cc5lkKNQ0odX2UKGgGaAloD0MI88tgjIhOcECUhpRSlGgVTcYBaBZHQJzpl3Ux20R1fZQoaAZoCWgPQwgCZVOusJVxQJSGlFKUaBVL7WgWR0Cc8Ru1ndwedX2UKGgGaAloD0MIK1H2lnJEaECUhpRSlGgVTegDaBZHQJz0G44Ia991fZQoaAZoCWgPQwgs0y8Rb/xnQJSGlFKUaBVN6ANoFkdAnPbxzzVc2XV9lChoBmgJaA9DCGtj7IQXK3BAlIaUUpRoFU2HAWgWR0Cc96xfv4M4dX2UKGgGaAloD0MIoYFYNvO3bkCUhpRSlGgVTWcDaBZHQJz5PnuAqd91fZQoaAZoCWgPQwhMpDSbx39nQJSGlFKUaBVN6ANoFkdAnP/j1schknV9lChoBmgJaA9DCJF8JZCSwGBAlIaUUpRoFU3oA2gWR0CdAlLowEhadX2UKGgGaAloD0MINJ2dDM6kcECUhpRSlGgVTQ4BaBZHQJ0E5fZ26kJ1fZQoaAZoCWgPQwgiHLPsSeRjQJSGlFKUaBVN6ANoFkdAnQX4ku6ErXV9lChoBmgJaA9DCP59xoWDVmVAlIaUUpRoFU3oA2gWR0CdBmkqc3ERdX2UKGgGaAloD0MI8z6O5kjPYUCUhpRSlGgVTegDaBZHQJ0HFyIYWLx1fZQoaAZoCWgPQwigjVw3pQJhQJSGlFKUaBVN6ANoFkdAnQiEUGmk33V9lChoBmgJaA9DCFSsGoS5Nl5AlIaUUpRoFU3oA2gWR0CdCNsLfDUFdX2UKGgGaAloD0MIavgW1g1CYECUhpRSlGgVTegDaBZHQJ0OFxOtW+51fZQoaAZoCWgPQwhDrtSzIMNgQJSGlFKUaBVN6ANoFkdAnQ8h2B8QZnV9lChoBmgJaA9DCLafjPFhMWZAlIaUUpRoFU3oA2gWR0CdErYiPhhqdX2UKGgGaAloD0MIIZG28aetbkCUhpRSlGgVTb4CaBZHQJ0WMq5LAYZ1fZQoaAZoCWgPQwgd6QyMvOdkQJSGlFKUaBVN6ANoFkdAnRZzAJswc3V9lChoBmgJaA9DCFWKHY1D+WNAlIaUUpRoFU3oA2gWR0CdHwX6InBtdX2UKGgGaAloD0MIW7VrQto7b0CUhpRSlGgVTYoCaBZHQJ0g+NFSbYt1fZQoaAZoCWgPQwgldJfEWR5fQJSGlFKUaBVN6ANoFkdAnSJAjMV1wHV9lChoBmgJaA9DCHV4COMns2NAlIaUUpRoFU3oA2gWR0CdJTqIJqqPdX2UKGgGaAloD0MI/ACkNvEAYUCUhpRSlGgVTegDaBZHQJ0wUZQ53kh1fZQoaAZoCWgPQwhwmGiQAo1iQJSGlFKUaBVN6ANoFkdAnTaKuW8h93V9lChoBmgJaA9DCDrnpzgOYmJAlIaUUpRoFU3oA2gWR0CdN+Muez2OdX2UKGgGaAloD0MIZ5sb05NUY0CUhpRSlGgVTegDaBZHQJ04cir1dxB1fZQoaAZoCWgPQwimmIOgo8BkQJSGlFKUaBVN6ANoFkdAnTlFDrqt5nV9lChoBmgJaA9DCIR+pl53TXFAlIaUUpRoFU0IAmgWR0CdOo3UQTVUdX2UKGgGaAloD0MIxty1hHymZkCUhpRSlGgVTegDaBZHQJ067rhR64V1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 320, "n_steps": 4096, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
lunar_env_HF_RL.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3fa68ed7c74a3fa9d8862bf1720088c6600ca45540ec5daad485ffa1e21673ce
3
+ size 147424
lunar_env_HF_RL/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
lunar_env_HF_RL/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f36d21ba0d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f36d21ba160>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f36d21ba1f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f36d21ba280>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f36d21ba310>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f36d21ba3a0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f36d21ba430>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f36d21ba4c0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f36d21ba550>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f36d21ba5e0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f36d21ba670>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f36d21ba700>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f36d21b7390>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1048576,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1675044646967429776,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABoVPb325Eu69TJNs7ntErA9rZA7/KG9MwAAgD8AAIA/ALK7PfU3UT9+ubA82p/evraURD01bM+8AAAAAAAAAABNq2a9uAa7uVhLGjiNowwzRheCOqpYNbcAAIA/AACAPw1mxL2qPog/olcOvmXp4b6eTL29xjRjvQAAAAAAAAAAzUMJPQxhtT8j3bM+cGGdvYP0GDwA3M49AAAAAAAAAABznLS9H1XSuQ9imDvLCq82Bn8PO5a5sLoAAIA/AACAP9qz/T2IDP4+J9YYPdcC3r5AYhE+gAT9PAAAAAAAAAAAmu2Xu8J8sz8Yc/C+cWnFvt9DsDub3Nk9AAAAAAAAAABAe9Q9PfoNOmdFH7QThJuvQ4R4u/KsrDMAAIA/AACAPxouO73DuS26Mf28NJFv5K7BuRG6w0JcswAAgD8AAIA/oAEHvhTMpLr9P2M+InA7vAm4073b/jo+AACAPwAAgD9zeQ6+SIjnOxsRpDxVkSG7QQVJvZiWFDwAAIA/AACAP5riSz3DGSu6vDDJu+osLDh7abs6oFHQNgAAgD8AAIA/GkKmPfaoZroQkjG7ANKXOMle+zqq/Qi4AACAPwAAgD8zbcO9ZlecP+OKVL7cAee+2c7rvYHCB7sAAAAAAAAAACAfUj4I9uK8zsWEOwRAD7rgqki+S/ixugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAABAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.04857599999999995,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDR07qERPYkCUhpRSlIwBbJRN6AOMAXSUR0CbW+AAAAAAdX2UKGgGaAloD0MISYEFMGWJYUCUhpRSlGgVTegDaBZHQJtcDTlT3qR1fZQoaAZoCWgPQwjw+sxZn/BlQJSGlFKUaBVN6ANoFkdAm2M/ZmI0qHV9lChoBmgJaA9DCB+duvJZhGJAlIaUUpRoFU3oA2gWR0CbY5YXfqHHdX2UKGgGaAloD0MI7Zv7q0f3ZUCUhpRSlGgVTegDaBZHQJtthBSk0rN1fZQoaAZoCWgPQwhSYWwhSKpxQJSGlFKUaBVNzgJoFkdAm23ze9Ba93V9lChoBmgJaA9DCLB0PjxLYWFAlIaUUpRoFU3oA2gWR0CbdHa24NI9dX2UKGgGaAloD0MIPQrXo/AQYUCUhpRSlGgVTegDaBZHQJt6aB9Tgl51fZQoaAZoCWgPQwhHyatzDL1lQJSGlFKUaBVN6ANoFkdAm4JJgssg+3V9lChoBmgJaA9DCOONzCP/q2NAlIaUUpRoFU3oA2gWR0Cbgt75VOsUdX2UKGgGaAloD0MIrvGZ7B+bYkCUhpRSlGgVTegDaBZHQJuFwUYbbUR1fZQoaAZoCWgPQwjUtmEUBNFdQJSGlFKUaBVN6ANoFkdAm4ZEH2RJVnV9lChoBmgJaA9DCHv4MlGEe2VAlIaUUpRoFU3oA2gWR0CbimP8Q7LddX2UKGgGaAloD0MIs7eU88XER0CUhpRSlGgVTegDaBZHQJuMk4yXUpd1fZQoaAZoCWgPQwhx6C0e3jdjQJSGlFKUaBVN6ANoFkdAm46GwiaAnXV9lChoBmgJaA9DCJd1/1gIV2JAlIaUUpRoFU3oA2gWR0CbjosHjZL7dX2UKGgGaAloD0MI53EYzN/3Y0CUhpRSlGgVTegDaBZHQJuR901ZTyd1fZQoaAZoCWgPQwhaZhGKrTZUQJSGlFKUaBVN6ANoFkdAm5IoqTbFj3V9lChoBmgJaA9DCHIycaugn2NAlIaUUpRoFU3oA2gWR0CbmkGu9vjwdX2UKGgGaAloD0MI4NqJkpCcY0CUhpRSlGgVTegDaBZHQJuaoppeu3d1fZQoaAZoCWgPQwgHJ6JfWwpeQJSGlFKUaBVN6ANoFkdAm6UUtAcDKnV9lChoBmgJaA9DCJ4Hd2fte2RAlIaUUpRoFU3oA2gWR0CbpYARkEs8dX2UKGgGaAloD0MIa7ddaK63XkCUhpRSlGgVTegDaBZHQJurgXenAIp1fZQoaAZoCWgPQwgLYwtBju9iQJSGlFKUaBVN6ANoFkdAm7FJnL7oCHV9lChoBmgJaA9DCBOaJJYUQW5AlIaUUpRoFU0rA2gWR0CbtqK8tf5UdX2UKGgGaAloD0MIXWqEfiZ8Y0CUhpRSlGgVTegDaBZHQJx1rIT4+KV1fZQoaAZoCWgPQwhBZJEmXnBiQJSGlFKUaBVN6ANoFkdAnHY84HX2/XV9lChoBmgJaA9DCOaWVkNi6m9AlIaUUpRoFU02AmgWR0CcdyhcJMQFdX2UKGgGaAloD0MIiPTb14GXXUCUhpRSlGgVTegDaBZHQJx4+foRqXZ1fZQoaAZoCWgPQwikUuxonLtiQJSGlFKUaBVN6ANoFkdAnHltRBNVR3V9lChoBmgJaA9DCJWAmISLVWNAlIaUUpRoFU3oA2gWR0CcfxC8OCoTdX2UKGgGaAloD0MIy54ENievcUCUhpRSlGgVTd8CaBZHQJx/1SaVlf91fZQoaAZoCWgPQwgCSdi3k/djQJSGlFKUaBVN6ANoFkdAnIDs6eXiSHV9lChoBmgJaA9DCOQybmogYWNAlIaUUpRoFU3oA2gWR0CcgPAZbY9QdX2UKGgGaAloD0MIH0dzZOVxZECUhpRSlGgVTegDaBZHQJyD+SvC/Gl1fZQoaAZoCWgPQwhjC0EOyuZjQJSGlFKUaBVN6ANoFkdAnIQm8mKIi3V9lChoBmgJaA9DCI4fKo0YpHBAlIaUUpRoFU2WAmgWR0CciikVN5+pdX2UKGgGaAloD0MIA0NWt7qvc0CUhpRSlGgVTXABaBZHQJyR4PpY9xJ1fZQoaAZoCWgPQwjTE5Z4QEFlQJSGlFKUaBVN6ANoFkdAnJTA6ltTDXV9lChoBmgJaA9DCCuE1VhC7WRAlIaUUpRoFU3oA2gWR0CclSIl+mWMdX2UKGgGaAloD0MIDr+bbtnUb0CUhpRSlGgVTW4DaBZHQJydYwVTJhh1fZQoaAZoCWgPQwgwoYLDi4phQJSGlFKUaBVN6ANoFkdAnJ7b7O3UhHV9lChoBmgJaA9DCFQe3QjLvHBAlIaUUpRoFU3cAmgWR0CcoVFaSs8xdX2UKGgGaAloD0MIJAot6/5bcUCUhpRSlGgVTQUBaBZHQJyharo4dZJ1fZQoaAZoCWgPQwgC1T+IZLlgQJSGlFKUaBVN6ANoFkdAnKUqVt4zJ3V9lChoBmgJaA9DCG5qoPmcNGRAlIaUUpRoFU3oA2gWR0CcpaKVpsXSdX2UKGgGaAloD0MIYaku4OUZYkCUhpRSlGgVTegDaBZHQJymcL2HtWx1fZQoaAZoCWgPQwgAdQMFXpVkQJSGlFKUaBVN6ANoFkdAnKfnbuc+aHV9lChoBmgJaA9DCB9Hc2TlNmZAlIaUUpRoFU3oA2gWR0CcqEQd0aIfdX2UKGgGaAloD0MIVDiCVAqeZUCUhpRSlGgVTegDaBZHQJytxthuwX91fZQoaAZoCWgPQwgI5X0czQ9lQJSGlFKUaBVN6ANoFkdAnK7kJWvKU3V9lChoBmgJaA9DCPGeA8sRmG9AlIaUUpRoFU1PA2gWR0CcsV1KGtZFdX2UKGgGaAloD0MIcnDpmHOOYkCUhpRSlGgVTegDaBZHQJyyUkyDZlF1fZQoaAZoCWgPQwg4gem07l5lQJSGlFKUaBVN6ANoFkdAnLKLL+xW1nV9lChoBmgJaA9DCNwQ4zWvg2JAlIaUUpRoFU3oA2gWR0Ccwbbi6xxDdX2UKGgGaAloD0MIAWvVrgn9TkCUhpRSlGgVTegDaBZHQJzFJ6nivPl1fZQoaAZoCWgPQwgA4xk09PBoQJSGlFKUaBVN6ANoFkdAnM93tOVPe3V9lChoBmgJaA9DCLLV5ZQAi2RAlIaUUpRoFU3oA2gWR0Cc0SSl3yI6dX2UKGgGaAloD0MI1LmilBDCYECUhpRSlGgVTegDaBZHQJzT31DjR2N1fZQoaAZoCWgPQwiIad/cX0hkQJSGlFKUaBVN6ANoFkdAnNP84gieNHV9lChoBmgJaA9DCAjJAiZwVmJAlIaUUpRoFU3oA2gWR0Cc2B88cMmXdX2UKGgGaAloD0MImSoYldRvYECUhpRSlGgVTegDaBZHQJzYnpaA4GV1fZQoaAZoCWgPQwgiADj27EFiQJSGlFKUaBVN6ANoFkdAnNltrGipN3V9lChoBmgJaA9DCA4tsp1vPWVAlIaUUpRoFU3oA2gWR0Cc2wD2JzkqdX2UKGgGaAloD0MI5IbfTbcKaUCUhpRSlGgVTegDaBZHQJzbZbW3BpJ1fZQoaAZoCWgPQwi/RSdLLVljQJSGlFKUaBVN6ANoFkdAnOGUkSmIkHV9lChoBmgJaA9DCN9OIsK/+2NAlIaUUpRoFU3oA2gWR0Cc4q04iosJdX2UKGgGaAloD0MISBXFqyw/ZUCUhpRSlGgVTegDaBZHQJzlJrLyMDR1fZQoaAZoCWgPQwi7YduiTEdiQJSGlFKUaBVN6ANoFkdAnOYkGiYb83V9lChoBmgJaA9DCJp8s82NUGJAlIaUUpRoFU3oA2gWR0Cc5lkKNQ0odX2UKGgGaAloD0MI88tgjIhOcECUhpRSlGgVTcYBaBZHQJzpl3Ux20R1fZQoaAZoCWgPQwgCZVOusJVxQJSGlFKUaBVL7WgWR0Cc8Ru1ndwedX2UKGgGaAloD0MIK1H2lnJEaECUhpRSlGgVTegDaBZHQJz0G44Ia991fZQoaAZoCWgPQwgs0y8Rb/xnQJSGlFKUaBVN6ANoFkdAnPbxzzVc2XV9lChoBmgJaA9DCGtj7IQXK3BAlIaUUpRoFU2HAWgWR0Cc96xfv4M4dX2UKGgGaAloD0MIoYFYNvO3bkCUhpRSlGgVTWcDaBZHQJz5PnuAqd91fZQoaAZoCWgPQwhMpDSbx39nQJSGlFKUaBVN6ANoFkdAnP/j1schknV9lChoBmgJaA9DCJF8JZCSwGBAlIaUUpRoFU3oA2gWR0CdAlLowEhadX2UKGgGaAloD0MINJ2dDM6kcECUhpRSlGgVTQ4BaBZHQJ0E5fZ26kJ1fZQoaAZoCWgPQwgiHLPsSeRjQJSGlFKUaBVN6ANoFkdAnQX4ku6ErXV9lChoBmgJaA9DCP59xoWDVmVAlIaUUpRoFU3oA2gWR0CdBmkqc3ERdX2UKGgGaAloD0MI8z6O5kjPYUCUhpRSlGgVTegDaBZHQJ0HFyIYWLx1fZQoaAZoCWgPQwigjVw3pQJhQJSGlFKUaBVN6ANoFkdAnQiEUGmk33V9lChoBmgJaA9DCFSsGoS5Nl5AlIaUUpRoFU3oA2gWR0CdCNsLfDUFdX2UKGgGaAloD0MIavgW1g1CYECUhpRSlGgVTegDaBZHQJ0OFxOtW+51fZQoaAZoCWgPQwhDrtSzIMNgQJSGlFKUaBVN6ANoFkdAnQ8h2B8QZnV9lChoBmgJaA9DCLafjPFhMWZAlIaUUpRoFU3oA2gWR0CdErYiPhhqdX2UKGgGaAloD0MIIZG28aetbkCUhpRSlGgVTb4CaBZHQJ0WMq5LAYZ1fZQoaAZoCWgPQwgd6QyMvOdkQJSGlFKUaBVN6ANoFkdAnRZzAJswc3V9lChoBmgJaA9DCFWKHY1D+WNAlIaUUpRoFU3oA2gWR0CdHwX6InBtdX2UKGgGaAloD0MIW7VrQto7b0CUhpRSlGgVTYoCaBZHQJ0g+NFSbYt1fZQoaAZoCWgPQwgldJfEWR5fQJSGlFKUaBVN6ANoFkdAnSJAjMV1wHV9lChoBmgJaA9DCHV4COMns2NAlIaUUpRoFU3oA2gWR0CdJTqIJqqPdX2UKGgGaAloD0MI/ACkNvEAYUCUhpRSlGgVTegDaBZHQJ0wUZQ53kh1fZQoaAZoCWgPQwhwmGiQAo1iQJSGlFKUaBVN6ANoFkdAnTaKuW8h93V9lChoBmgJaA9DCDrnpzgOYmJAlIaUUpRoFU3oA2gWR0CdN+Muez2OdX2UKGgGaAloD0MIZ5sb05NUY0CUhpRSlGgVTegDaBZHQJ04cir1dxB1fZQoaAZoCWgPQwimmIOgo8BkQJSGlFKUaBVN6ANoFkdAnTlFDrqt5nV9lChoBmgJaA9DCIR+pl53TXFAlIaUUpRoFU0IAmgWR0CdOo3UQTVUdX2UKGgGaAloD0MIxty1hHymZkCUhpRSlGgVTegDaBZHQJ067rhR64V1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 320,
80
+ "n_steps": 4096,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 128,
87
+ "n_epochs": 20,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
lunar_env_HF_RL/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9009f49588fd8108494a6451237fa4f1334eb6f23fe3fae1755fc32cdffaecf0
3
+ size 87929
lunar_env_HF_RL/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a3ebc510512a73999dfe2a341d8437f8b5f53e53f12092452e0f0f3edc83fc5
3
+ size 43393
lunar_env_HF_RL/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lunar_env_HF_RL/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 254.41723236553207, "std_reward": 16.168225318814972, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-04T20:29:17.269698"}
 
1
+ {"mean_reward": 255.08327430493523, "std_reward": 20.35802011668448, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-30T02:43:18.264031"}