--- base_model: cardiffnlp/twitter-roberta-base-irony tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: Twroberta-baseB_10epoch results: [] --- # Twroberta-baseB_10epoch This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-irony](https://huggingface.co/cardiffnlp/twitter-roberta-base-irony) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1763 - Accuracy: 0.7771 - Precision: 0.2366 - Recall: 0.3137 - F1: 0.2679 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 217 | 0.1251 | 0.8571 | 0.0 | 0.0 | 0.0 | | No log | 2.0 | 434 | 0.1213 | 0.8571 | 0.0 | 0.0 | 0.0 | | 0.1617 | 3.0 | 651 | 0.1226 | 0.8157 | 0.2655 | 0.3026 | 0.2828 | | 0.1617 | 4.0 | 868 | 0.1423 | 0.7671 | 0.1991 | 0.2989 | 0.2389 | | 0.0899 | 5.0 | 1085 | 0.1594 | 0.7364 | 0.2142 | 0.3727 | 0.2695 | | 0.0899 | 6.0 | 1302 | 0.1560 | 0.8086 | 0.2567 | 0.2214 | 0.2320 | | 0.0411 | 7.0 | 1519 | 0.1963 | 0.715 | 0.1945 | 0.3875 | 0.2584 | | 0.0411 | 8.0 | 1736 | 0.1687 | 0.7914 | 0.2520 | 0.2804 | 0.2601 | | 0.0411 | 9.0 | 1953 | 0.1726 | 0.7843 | 0.2419 | 0.2989 | 0.2646 | | 0.0197 | 10.0 | 2170 | 0.1763 | 0.7771 | 0.2366 | 0.3137 | 0.2679 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1