--- base_model: cardiffnlp/twitter-roberta-base-irony tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: Twroberta-baseB_5epoch results: [] --- # Twroberta-baseB_5epoch This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-irony](https://huggingface.co/cardiffnlp/twitter-roberta-base-irony) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1520 - Accuracy: 0.7793 - F1: 0.2545 - Precision: 0.2289 - Recall: 0.2878 - Precision Sarcastic: 0.3258 - Recall Sarcastic: 0.4 - F1 Sarcastic: 0.3591 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Precision Sarcastic | Recall Sarcastic | F1 Sarcastic | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------------:|:----------------:|:------------:| | No log | 1.0 | 217 | 0.1224 | 0.8571 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | No log | 2.0 | 434 | 0.1224 | 0.8686 | 0.2294 | 0.4139 | 0.1587 | 0.6232 | 0.2389 | 0.3454 | | 0.1581 | 3.0 | 651 | 0.1277 | 0.7979 | 0.2474 | 0.2290 | 0.2694 | 0.3380 | 0.4 | 0.3664 | | 0.1581 | 4.0 | 868 | 0.1438 | 0.7914 | 0.2503 | 0.2424 | 0.2620 | 0.3137 | 0.3556 | 0.3333 | | 0.0781 | 5.0 | 1085 | 0.1520 | 0.7793 | 0.2545 | 0.2289 | 0.2878 | 0.3258 | 0.4 | 0.3591 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.1+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1