--- base_model: vinai/bertweet-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: bertweet-base_3epoch10 results: [] --- # bertweet-base_3epoch10 This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7005 - Accuracy: 0.7392 - F1: 0.4217 - Precision: 0.5789 - Recall: 0.3317 - Precision Sarcastic: 0.5789 - Recall Sarcastic: 0.3317 - F1 Sarcastic: 0.4217 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Precision Sarcastic | Recall Sarcastic | F1 Sarcastic | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------------:|:----------------:|:------------:| | No log | 1.0 | 174 | 1.3971 | 0.7493 | 0.4 | 0.6374 | 0.2915 | 0.6374 | 0.2915 | 0.4 | | No log | 2.0 | 348 | 1.0371 | 0.7334 | 0.3854 | 0.5686 | 0.2915 | 0.5686 | 0.2915 | 0.3854 | | 0.0617 | 3.0 | 522 | 1.6060 | 0.7147 | 0.4277 | 0.5034 | 0.3719 | 0.5034 | 0.3719 | 0.4277 | | 0.0617 | 4.0 | 696 | 1.3603 | 0.7464 | 0.4172 | 0.6117 | 0.3166 | 0.6117 | 0.3166 | 0.4172 | | 0.0617 | 5.0 | 870 | 1.5872 | 0.7478 | 0.4373 | 0.6071 | 0.3417 | 0.6071 | 0.3417 | 0.4373 | | 0.032 | 6.0 | 1044 | 1.4206 | 0.7493 | 0.3916 | 0.6437 | 0.2814 | 0.6437 | 0.2814 | 0.3916 | | 0.032 | 7.0 | 1218 | 1.4775 | 0.7507 | 0.4055 | 0.6413 | 0.2965 | 0.6413 | 0.2965 | 0.4055 | | 0.032 | 8.0 | 1392 | 1.5835 | 0.7421 | 0.4389 | 0.5833 | 0.3518 | 0.5833 | 0.3518 | 0.4389 | | 0.0125 | 9.0 | 1566 | 1.7009 | 0.7464 | 0.3846 | 0.6322 | 0.2764 | 0.6322 | 0.2764 | 0.3846 | | 0.0125 | 10.0 | 1740 | 1.7005 | 0.7392 | 0.4217 | 0.5789 | 0.3317 | 0.5789 | 0.3317 | 0.4217 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1