File size: 2,426 Bytes
f8a6f8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
base_model: cardiffnlp/twitter-roberta-base-irony
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: twitter-roberta-base_3epoch5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# twitter-roberta-base_3epoch5
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-irony](https://huggingface.co/cardiffnlp/twitter-roberta-base-irony) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7195
- Accuracy: 0.7738
- F1: 0.5341
- Precision: 0.6522
- Recall: 0.4523
- Precision Sarcastic: 0.6522
- Recall Sarcastic: 0.4523
- F1 Sarcastic: 0.5341
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Precision Sarcastic | Recall Sarcastic | F1 Sarcastic |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------------:|:----------------:|:------------:|
| No log | 1.0 | 174 | 1.9750 | 0.7695 | 0.4702 | 0.6893 | 0.3568 | 0.6893 | 0.3568 | 0.4702 |
| No log | 2.0 | 348 | 1.8774 | 0.7695 | 0.5062 | 0.656 | 0.4121 | 0.656 | 0.4121 | 0.5062 |
| 0.027 | 3.0 | 522 | 2.0072 | 0.7738 | 0.5016 | 0.6810 | 0.3970 | 0.6810 | 0.3970 | 0.5016 |
| 0.027 | 4.0 | 696 | 1.6484 | 0.7622 | 0.5299 | 0.6118 | 0.4673 | 0.6118 | 0.4673 | 0.5299 |
| 0.027 | 5.0 | 870 | 1.7195 | 0.7738 | 0.5341 | 0.6522 | 0.4523 | 0.6522 | 0.4523 | 0.5341 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|