File size: 3,833 Bytes
c60ceae
 
fa7e6c7
 
 
c60ceae
479b4fc
fa7e6c7
024ff56
fa7e6c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
024ff56
fa7e6c7
 
 
024ff56
 
 
 
 
 
 
 
 
 
fa7e6c7
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
license: cc-by-4.0
language:
- he
inference: false
---
# **DictaLM-rab**: A Large Generative Language Model for Rabbinic Hebrew 

A large generative pretrained transformer (GPT) language model for Hebrew, released [here](https://arxiv.org/abs/2309.14568).

- This is an alpha version of the model, and there are many improvements to come.

- We are actively working on improving the model, so stay tuned.

This is the base-model pretrained on general text completion. On it's own, it isn't very useful, but it can be fine-tuned for specific tasks (instruct, chat, QA, and more). 

This model differs from the regular [DictaLM](https://huggingface.co/dicta-il/dictalm-7b/) regarding the training data used for pretraining. The regular `DictaLM` was pretrained on modern texts only, and this model (`DictaLM-Rab`) was pretrained on a mixture of 50% modern texts and 50% rabbinic/historical texts.
     
## Sample usage (for text completion):

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

tokenizer = AutoTokenizer.from_pretrained('dicta-il/dictalm-rab-7b')
model = AutoModelForCausalLM.from_pretrained('dicta-il/dictalm-rab-7b', trust_remote_code=True).cuda()

model.eval()

with torch.inference_mode():
    prompt = '讗诪专 专讘 讬讛讜讚讛 讗诪专 砖诪讜讗诇 讛讻讜转讘'
    kwargs = dict(
        inputs=tokenizer(prompt, return_tensors='pt').input_ids.to(model.device),
        do_sample=True,
        top_k=50,
        top_p=0.95,
        temperature=0.75,
        max_length=100,
        min_new_tokens=5
    )
    
    print(tokenizer.batch_decode(model.generate(**kwargs), skip_special_tokens=True))
```

There are many different parameters you can input into `kwargs` for different results (greedy, beamsearch, different samplign configurations, longer/shorter respones, etc.).

You can view the full list of parameters you can pass to the `generate` function [here](https://huggingface.co/docs/transformers/v4.33.0/en/main_classes/text_generation#transformers.GenerationMixin.generate).

### Alternative ways to initialize the model:

If you have multiple smaller GPUs, and the package `accelerate` is installed, you can initialize the model split across the devices:
```python
model = AutoModelForCausalLM.from_pretrained('dicta-il/dictalm-rab-7b', trust_remote_code=True, device_map='auto')
```

If you are running on linux and have the `bitsandbytes` package installed, you can initialize the model in 4/8 bit inference mode:
```python
model = AutoModelForCausalLM.from_pretrained('dicta-il/dictalm-rab-7b', trust_remote_code=True, load_in_8bit=True)
```

If you have [FlashAttention](https://github.com/Dao-AILab/flash-attention) installed in your environment, you can instruct the model to use the flash attention implementation (either V1 or V2, whichever is installed):
```python
model = AutoModelForCausalLM.from_pretrained('dicta-il/dictalm-rab-7b', trust_remote_code=True, use_flash_attention=True)
```


## Citation

If you use DictaLM in your research, please cite ```DictaLM -- A Large Generative Language Model for Modern Hebrew```

**BibTeX:**

```bibtex
@misc{shmidman2023introducing,
      title={Introducing DictaLM -- A Large Generative Language Model for Modern Hebrew}, 
      author={Shaltiel Shmidman and Avi Shmidman and Amir David Nissan Cohen and Moshe Koppel},
      year={2023},
      eprint={2309.14568},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

## License

Shield: [![CC BY 4.0][cc-by-shield]][cc-by]

This work is licensed under a
[Creative Commons Attribution 4.0 International License][cc-by].

[![CC BY 4.0][cc-by-image]][cc-by]

[cc-by]: http://creativecommons.org/licenses/by/4.0/
[cc-by-image]: https://i.creativecommons.org/l/by/4.0/88x31.png
[cc-by-shield]: https://img.shields.io/badge/License-CC%20BY%204.0-lightgrey.svg