dietercoppens commited on
Commit
fbf222f
·
1 Parent(s): 6042375

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 248.43 +/- 24.85
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f75d5431040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f75d54310d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f75d5431160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f75d54311f0>", "_build": "<function ActorCriticPolicy._build at 0x7f75d5431280>", "forward": "<function ActorCriticPolicy.forward at 0x7f75d5431310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f75d54313a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f75d5431430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f75d54314c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f75d5431550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f75d54315e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f75d542c4e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAB0wTJxpZlg7y8wo89fpGyahBZnWsujuztYPdqR4jqnYWzA7793XHcCw38ZAq120h6z2dKiYf967Alfzz+MgkjnYdc10muWwVn5PA4DyYRx8rbSecoC1pqw0a09YMYS40LHhPqXsAod/Yrt3/G2/hOqfkTIWUVA170Z56uYPHKdyODh8SZAfBxs8sDl4A7EbVfMoezm22MKe2PRiSHRYIra9TpvU5GCHJ3kIzH1Qcz3tnd9YW4vc57Zw6WDZH2zEYP0dP4bI9/uAWoFZEdarmGVCHXPStLO3NrXv046+YSmvmuY64Ae2uojFx6D8pNag8v2ABa2Y1AVvwnWvmxPivbL6NvSPNcvkXqTzncY9yaS9ZSAxGRnsDL25OlQGhAr0yq4/IKDzZwvJNZDjzbAe9oEpJ2qZ8oMuYrqh34d1L0F2Sr7hJbHVMcEJ1whByaxTnIG5EXauKoEO/oPYh82IyScf34LSCB7+3D5hCQSYXrZffWKOVtVrxLPGhH/Psw7OMj9jLZys0G6ZLhypNINQ5Nej2vM1tsCddEQfQlTBjyzQO4uhozTMMdevBW+Q6m06Kqf9gphGB5264H5r9bWRrURScR8VEgNVxLD71B2D/Lpy8l3sXRC3+aEME73NwoY0nNAMgLpABRhTBc6ZZ3rpD9j9rPJP6uO4Drt4QA5mhOtTNHFnjanWCwwMvm5hxkoPzTmk1wBeqrjziW43dlSa254Aj+IBFB54uZkuFRFY8XV0ygwGTHtn3vEpgW24bi4DNLiMRiK1rtJkBNhNOiVqvZz51jQr9tGiMzQ6k5gpRadqrDqZMyAKttykwBjDl0qYyNwc1BM7PDiqfXtFjRVsEzNTPpRUwCtZGRNFVYkGtu8ta5EcKGBaiUu5fMZqMwaEMHk26hvFGV+ejMlp8bInD3zF5oJvh6XOY550xLSRKlah3RnGgKVk8vqtNSvOukp97YWPksnXTKlHi/iSPR9vAtunwCGGJU1pjIGlcJk4qpwTOwrYMYX0VJUCYpih5pu3lPUnI7sM+eyIAYDRAnCJQAGKGi7Mbyu9nd6djLPhGCJ4KxknBPd9buFy8p70AeTD16rWVQa2C5ZcCC4a1w9p2XIElBbVDMrsmjxtsqZeN1vCb0wUJs1uKHYcOxYkYBObEGZ/9196GJFsMevs+HK9/OhjAMr1MbogjJORMukXb0QWw0D+DhDe8w3eaQlILBPBZJ8/C6dFqFbqpKHOGHUcrnk+0qX7V8LgSZWvfHzYJl0+BgAK0b8e1PdZ+geTP28/QfOEvvdRJLZ7NDgneo+nyt4QrSCiItgbZ+LqNzv7BtkH0/jH9MC8oOt6zUUyipRtT6rT7a8Q9fMiJTv2gdLJtwZSgoUSXIVNFoQBKMu09KGxsjXAnXqrdVC1FkM6RsAZF1M2UFoCVNm+f/GHt9VijaHr68bibAQNmVQ7uXGklyeYkIFoCGwSevedMLbiopxrQNGEwGJEcrNKdiw+iZ1fTsNFH/5xxmL9f2jQCNcf/nVj79necxlV08tiBMCN1BXoY69Fr2OGOJONkPSOZkjnMlBoTZLhZtbkP0iC7uZAfMzkIVLL9DC4aCS4u9dmH7x3DktvqmFP1h80OEbvY1HZE923M3u9Y6pREpv9uv1sLaWJd9rSI8vbk+FXCqdfC9qYTMEpWkL1uDbuMoapM5Vu88HtBiKwsWHAcirZuuXna4D6sva7utouL5RPGy+trmYexyHwS4zEOhTfcrZWPIi52/hu6v/MUicaqIr4HPy7Qtqz34pRyBzthmZaAcxCC7xEj4NqgVAHxgoAxK0YzJTetl0V4GpoTvwtcxTQUlQtxDuOvVOfYswHPasvDSWhmerWVgDP+40WOdEapYH8tEmpDQcS2Ie4qaqyOjNhMA+WW7M9x05VAAbJLQuXMn5sfgkkHd3iB1699HJaS2nzcghEwEb7TOAiaLO1DpaysD2mplLZJj12u+JIoKSfmW7Ihd+KKOHug3k85wGofAZXVf74ZgYdGA+jk6U2w+aO6yFD1hEZxSkYLFTyYRWWRkWBqjF5mP+5K62b9sAj9B/RQolzQmuDsWZovVIid56ns618C2di58YXWY9D45fh5X7X0fdNmPGSQxUzGxwNecT7JDZhLTKOP6Q86eRAqi/Iyfxi3jdx+SwnDRIp2TXNeSua0oMNgYcbpAKROWHn3VXYq7xFdWLDc4FyIahr88Jp6mrbwiFRbyFpt5o2XYZIJ0XSaGTD/qApifjBjx34l++Gkm9Xr5GYCFNssS4cJTSEWqDds9i+pNm0bdxiFMsIwYjS/JJZ2P8yeMpbOjfB230Lf3FPhtda0ZD4saspQG2MLtyza1MU2jpFJRALV2TOKPiT9ALmo8dpyTeX49HRG4CGWnALptHo7TXeJaUnsbNY9hXSkXoEse9RssbFTtsXy3TsgjYNU8XQTPifKN8r23gZqmb6AmAQ9h8lphW3TvLBnLO9DAyCdGACxytIN3bY4dQqV4JN8RaEsI/BaHPYg5Lk7LQmb65u1Hi8yhN8drcL7jc0RYP2yBU6KUaLGks+B8Cca4bpZXSRN5QFI20mi61sc7O4IJNp5MlxeK46l1Z+Px86IimbGke95hIlazQ3CtPPhYQHc7374rUQ4z2gt/I8ceIAtC/YaI6qy5xz1DB1VJwLz3K9aR2jBXy2nvmH2m3/Mi8RbtICjscM11tiGGwCIhZgOqxWRZNcgfDdErEB7NRcrRNUAKAi8ACLQkK3J5V5JvwVMuyHMBEFQDvwginHTIAB2L5518Vo9Kx11kI9mUEIXY5eu5RCWtRo1GUTwBnGaRl952g/FdmTK0IdbahinWAXlJYF92y9/2BZwIXN2pANBtAmScSHxbD9xwAzGSa4Ul9xqAe6HFjIoQgmJ4oe1QUALkwWP0xM0LDS3Dgwuvv9dOBqWShxmKxWkSadxQl3ML+9YBGT0s1qTqMMs7yw3uLMVmhTmY63fA+ObNCoWYTKiGXeyk3qWHUuVmCKj3fsI9f96LcMDECIHqZL2PUp71YSqTEU/v6fWZoXjchxXA5pcksy1bdRwaXBnvDi2mzfvP/sannDNj/bxUVdoGuxJQJHf2LpMrr4R/ExVlz0+Za2EpOaO4gFamdYffalmLr85d4es2ijwXTwSwLsjHuZgc3WtNcy8TIc+3NyrH+qS2t8jSYvdPH3iyFl+YIqOMr2KnpGbnT3JjZot1AYux78kbBZuoSd6UqEWcEKacjD5KxuvCefq5PtaXfwMHeGj38YvewezNKLbRHqSPXuHbJvS0BM6fWtmSV5It2/NAT8GYUebV/FJ7BV4fv4MLA5r69ngchEPlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLAXWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672998995901243534, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbi0jzD+X26jmUwNC0kYq9dEV+7ukKoswAAgD8AAIA/gNAZvR2mrT4bpHQ7KzqNvmMSezxrVeY8AAAAAAAAAAAAW1C9ih67P8WsN7+hrHk+wS9VPUp+pT0AAAAAAAAAADOmvL2P7jy6h4A7ue9lObQ5hrC67epdOAAAgD8AAAAAM22ZPCkAArrrkAc4xS4CM9WeuLouGB+3AACAPwAAgD8ahAe9JQiRP6psEL1RgeO+/mxjvQOg9bsAAAAAAAAAAADkMbzuio68zPqLOxNxqzx5r/Y9x/GHvQAAgD8AAIA/mkK5vUhphLqlBX449liEMw2x+bpHzpO3AACAPwAAgD8z66w7KRA3ulknJr0W3t69Jqc0vDeExz4AAIA/AAAAABqdor1c2za6xSsFNpAgBjGrFhi5KakktQAAgD8AAIA/s+NEPXuKoLoenBY0i2FCrpqGDLipY6KzAACAPwAAgD8ADre9j9oIuiIpxLrN5Ti0gZD+uq5u5zkAAIA/AACAP8152T1SCvg8TXb+O6u6Vb7o+449/dYoPgAAAAAAAAAAZua5PUhzibpVMgQ2Ld6dMP0nR7uAEyC1AACAPwAAgD8zIOM8aZMovGV07zv5Uos8WM2JvU7wZj0AAIA/AACAP2YSZDzUfZc93QR2vn2bHr4Q6b69MJ9XPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4bchxuuzZ0CUhpRSlIwBbJRN6AOMAXSUR0C8KKWPkq+bdX2UKGgGaAloD0MIuMoTCDt0Z0CUhpRSlGgVTegDaBZHQLwv4mlZX+51fZQoaAZoCWgPQwiUpGsm38pIQJSGlFKUaBVL9mgWR0C8MM9y5qdpdX2UKGgGaAloD0MI3pBGBc5ZYkCUhpRSlGgVTegDaBZHQLwxrA80UGp1fZQoaAZoCWgPQwiFtTF2wkVMQJSGlFKUaBVLzGgWR0C8MuKKDTScdX2UKGgGaAloD0MI3qrrUM3LYkCUhpRSlGgVTegDaBZHQLwzE5z5oGp1fZQoaAZoCWgPQwiKO97kt9RnQJSGlFKUaBVN6ANoFkdAvDP9PFefI3V9lChoBmgJaA9DCF5kAn4N7mNAlIaUUpRoFU3oA2gWR0C8NvAsCkoGdX2UKGgGaAloD0MI+DO8WQP1ZECUhpRSlGgVTegDaBZHQLw3CqQzUI91fZQoaAZoCWgPQwjfawiOS9VhQJSGlFKUaBVN6ANoFkdAvDcLCBPKuHV9lChoBmgJaA9DCAOYMnDAhGFAlIaUUpRoFU3oA2gWR0C8Nx5oCdSVdX2UKGgGaAloD0MIkszqHW4TY0CUhpRSlGgVTegDaBZHQLw3Y2Qnx8V1fZQoaAZoCWgPQwi4H/DAwPpwQJSGlFKUaBVNOQJoFkdAvDhh96Tnq3V9lChoBmgJaA9DCOljPiBQMWdAlIaUUpRoFU3oA2gWR0C8OLy8jAzpdX2UKGgGaAloD0MIsoLfhpiWZUCUhpRSlGgVTegDaBZHQLw5ROxB3Rp1fZQoaAZoCWgPQwiR1a2eEzpkQJSGlFKUaBVN6ANoFkdAvDmCvjfelHV9lChoBmgJaA9DCJD11Oor+GBAlIaUUpRoFU3oA2gWR0C8OhL4rSVodX2UKGgGaAloD0MIXvI/+bsoZECUhpRSlGgVTegDaBZHQLw6GO1fE4x1fZQoaAZoCWgPQwjay7bTVldlQJSGlFKUaBVN6ANoFkdAvDotIvrWy3V9lChoBmgJaA9DCGwGuCCbPXFAlIaUUpRoFU0OAmgWR0C8QjPhQ3xXdX2UKGgGaAloD0MIXRYTm48EcUCUhpRSlGgVTXcDaBZHQLxCjbZezD51fZQoaAZoCWgPQwitF0M50XZnQJSGlFKUaBVN6ANoFkdAvELrFhoduHV9lChoBmgJaA9DCPdXj/vWJ2BAlIaUUpRoFU3oA2gWR0C8RDtoSL62dX2UKGgGaAloD0MInwCKkSWSbECUhpRSlGgVTeUBaBZHQLxE9mLtNSJ1fZQoaAZoCWgPQwjxS/28KddkQJSGlFKUaBVN6ANoFkdAvEUU2Ifr8nV9lChoBmgJaA9DCEWfjzLiNHFAlIaUUpRoFU1QA2gWR0C8Rf2OuJUHdX2UKGgGaAloD0MIJuSDns1mcECUhpRSlGgVTS4BaBZHQLxGCdu5z5p1fZQoaAZoCWgPQwiatKm6xzJuQJSGlFKUaBVNYQJoFkdAvEZ01YQrc3V9lChoBmgJaA9DCAqhgy7hamNAlIaUUpRoFU3oA2gWR0C8R34XCTEBdX2UKGgGaAloD0MIUyKJXsaCZECUhpRSlGgVTegDaBZHQLxHl3cHnlp1fZQoaAZoCWgPQwg4FakwNhVgQJSGlFKUaBVN6ANoFkdAvEeX0+TvA3V9lChoBmgJaA9DCHP3OT5ayG5AlIaUUpRoFU1UA2gWR0C8R6osI3R5dX2UKGgGaAloD0MIRBSTN8BkZ0CUhpRSlGgVTegDaBZHQLxI5tAcDKZ1fZQoaAZoCWgPQwiKHvgYLA9xQJSGlFKUaBVNKAJoFkdAvEkMdp7CznV9lChoBmgJaA9DCLg/Fw1Z6XBAlIaUUpRoFU0dAWgWR0C8SaBBAv+PdX2UKGgGaAloD0MIeCXJc33MZECUhpRSlGgVTegDaBZHQLxJ4YL9deJ1fZQoaAZoCWgPQwh1yqMb4R5nQJSGlFKUaBVN6ANoFkdAvEohkRSP2nV9lChoBmgJaA9DCPvqqkCtEXJAlIaUUpRoFU0mAmgWR0C8SoEJF9a2dX2UKGgGaAloD0MIFtwPeGCZYECUhpRSlGgVTegDaBZHQLxKvtUGVzJ1fZQoaAZoCWgPQwicUfNV8iFvQJSGlFKUaBVNLAFoFkdAvEsOt5le4XV9lChoBmgJaA9DCD0Og/nrxXFAlIaUUpRoFU3lAmgWR0C8S4nfVI7OdX2UKGgGaAloD0MIX7THC2khbkCUhpRSlGgVTQ0CaBZHQLxL5X2dupF1fZQoaAZoCWgPQwiNCwdCMvNxQJSGlFKUaBVNKgFoFkdAvEyD1rZam3V9lChoBmgJaA9DCJP+XgqPhXBAlIaUUpRoFU3FAmgWR0C8UeA79ycTdX2UKGgGaAloD0MISL99HfjccECUhpRSlGgVTVABaBZHQLxTEKw6hg51fZQoaAZoCWgPQwhBf6FHjKJwQJSGlFKUaBVNhgFoFkdAvFMxxLkCFXV9lChoBmgJaA9DCG3kuills3JAlIaUUpRoFU0YAWgWR0C8U2Ld8Aq/dX2UKGgGaAloD0MIwCMqVLd7ckCUhpRSlGgVTaoBaBZHQLxT64R28qZ1fZQoaAZoCWgPQwiRmnYxjRFyQJSGlFKUaBVNggFoFkdAvFRfZ6D5CXV9lChoBmgJaA9DCIwxsI6jDHBAlIaUUpRoFU3GA2gWR0C8VUxkmQbNdX2UKGgGaAloD0MIDJQUWACicECUhpRSlGgVTdcCaBZHQLxWizreImB1fZQoaAZoCWgPQwixqIjTybpgQJSGlFKUaBVN6ANoFkdAvFapiF0xM3V9lChoBmgJaA9DCOpcUUoIZ29AlIaUUpRoFU2SAmgWR0C8V16ISDh+dX2UKGgGaAloD0MIzy9K0F+YcECUhpRSlGgVTbYDaBZHQLxXyy/sVtZ1fZQoaAZoCWgPQwgjowOSsD80QJSGlFKUaBVL32gWR0C8V/33cpLFdX2UKGgGaAloD0MI4gLQKN3tYUCUhpRSlGgVTegDaBZHQLxYUvwEyL11fZQoaAZoCWgPQwhffNEeL91iQJSGlFKUaBVN6ANoFkdAvFhrlJYkmnV9lChoBmgJaA9DCEw1s5YCDHBAlIaUUpRoFU2lAWgWR0C8WICBshxHdX2UKGgGaAloD0MIkGeXb/3NbECUhpRSlGgVTZgCaBZHQLxZXOerdWR1fZQoaAZoCWgPQwiCVmDIauxsQJSGlFKUaBVN7AJoFkdAvFrKoLofS3V9lChoBmgJaA9DCA2Jeyz9GXJAlIaUUpRoFU1jAWgWR0C8W14Mz/IbdX2UKGgGaAloD0MIBYvDmd/cbECUhpRSlGgVTZQDaBZHQLxbqT8HfMx1fZQoaAZoCWgPQwi/YaJBCrRyQJSGlFKUaBVN+QJoFkdAvFwBhpg1FnV9lChoBmgJaA9DCBAlWvJ4UGZAlIaUUpRoFU3oA2gWR0C8XFBBiTdMdX2UKGgGaAloD0MIaY1BJ4SDcUCUhpRSlGgVTQ4CaBZHQLxcvLowEhd1fZQoaAZoCWgPQwjuXBjpBWtwQJSGlFKUaBVNKAFoFkdAvFzRYJVsDXV9lChoBmgJaA9DCFQ4glSKc3BAlIaUUpRoFU0PA2gWR0C8XQ2GRFI/dX2UKGgGaAloD0MIaAkyAioUckCUhpRSlGgVTaYBaBZHQLxdJOE/Spl1fZQoaAZoCWgPQwhN1xNdlyZsQJSGlFKUaBVNAQNoFkdAvF1DqqwQlXV9lChoBmgJaA9DCGkB2laz3XFAlIaUUpRoFU05AmgWR0C8Yy7g4wRHdX2UKGgGaAloD0MIQ+c1dgkecUCUhpRSlGgVTTgCaBZHQLxjdpEhJRR1fZQoaAZoCWgPQwhnRj8aTuhkQJSGlFKUaBVN6ANoFkdAvGOYZvUBn3V9lChoBmgJaA9DCKFkcmqnMnFAlIaUUpRoFU3YAmgWR0C8Y6NAxBVudX2UKGgGaAloD0MIxAjh0YZfcECUhpRSlGgVTXICaBZHQLxjo0jkdWB1fZQoaAZoCWgPQwhgPe5brV5wQJSGlFKUaBVNRgFoFkdAvGRUqvvBrXV9lChoBmgJaA9DCAjpKXII33JAlIaUUpRoFU0MAmgWR0C8ZX2gezUrdX2UKGgGaAloD0MI3A94YAC5cUCUhpRSlGgVTX8BaBZHQLxmQYvnKW91fZQoaAZoCWgPQwhwKHy2DhBuQJSGlFKUaBVNHgJoFkdAvGZa8RL9M3V9lChoBmgJaA9DCBAEyNCxIXBAlIaUUpRoFU3GAWgWR0C8Zr0yDZlGdX2UKGgGaAloD0MIPzkKEIV0b0CUhpRSlGgVTfABaBZHQLxnJ2b5M111fZQoaAZoCWgPQwjgvg6cM1xuQJSGlFKUaBVN1AFoFkdAvGcqLm6oVHV9lChoBmgJaA9DCIyd8BKc93FAlIaUUpRoFU1mAWgWR0C8Z7T0xubadX2UKGgGaAloD0MIYKxvYHJkcUCUhpRSlGgVTZEBaBZHQLxnt9srNGF1fZQoaAZoCWgPQwiJeOv8W5xyQJSGlFKUaBVNegFoFkdAvGfn1DjR2XV9lChoBmgJaA9DCN6vAny3XWZAlIaUUpRoFU3oA2gWR0C8aHP3N9pidX2UKGgGaAloD0MIWU5C6QutQ0CUhpRSlGgVS99oFkdAvGiqk+HJtHV9lChoBmgJaA9DCP1qDhDMim5AlIaUUpRoFU2oAmgWR0C8aKz67/XHdX2UKGgGaAloD0MIOPktOhmZcECUhpRSlGgVTf8BaBZHQLxpGaW5Yo11fZQoaAZoCWgPQwgsRl1rLwdwQJSGlFKUaBVNhAJoFkdAvGksZwXIl3V9lChoBmgJaA9DCJSGGoUkD3BAlIaUUpRoFU0YAmgWR0C8alCtNi6QdX2UKGgGaAloD0MIB+xq8hSJckCUhpRSlGgVTWcBaBZHQLxq+KSgXdl1fZQoaAZoCWgPQwi05sdfmsJwQJSGlFKUaBVNOgFoFkdAvGsQbhm5D3V9lChoBmgJaA9DCJWcE3towz5AlIaUUpRoFUvhaBZHQLxrHwEyLyd1fZQoaAZoCWgPQwhi2jf3V9FxQJSGlFKUaBVNSAFoFkdAvGs+QuEmIHV9lChoBmgJaA9DCJon1xTIlD1AlIaUUpRoFU0EAWgWR0C8a0tg8bJfdX2UKGgGaAloD0MIPZ0rSgm6YECUhpRSlGgVTegDaBZHQLxrkTxoZht1fZQoaAZoCWgPQwhP54pSQsQ3QJSGlFKUaBVL6WgWR0C8a6eruIAPdX2UKGgGaAloD0MImIbhI+KIbUCUhpRSlGgVTccBaBZHQLxr8QyhzvJ1fZQoaAZoCWgPQwgnvtpRnHBxQJSGlFKUaBVN0QJoFkdAvG08fPomonV9lChoBmgJaA9DCH16bMuAgz1AlIaUUpRoFUv0aBZHQLxtizu4PPN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f140c4e554a7e67bdfad3986f8329a9db72a6e230208735b72e840b3b51de72
3
+ size 150872
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f75d5431040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f75d54310d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f75d5431160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f75d54311f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f75d5431280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f75d5431310>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f75d54313a0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f75d5431430>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f75d54314c0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f75d5431550>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f75d54315e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f75d542c4e0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAB0wTJxpZlg7y8wo89fpGyahBZnWsujuztYPdqR4jqnYWzA7793XHcCw38ZAq120h6z2dKiYf967Alfzz+MgkjnYdc10muWwVn5PA4DyYRx8rbSecoC1pqw0a09YMYS40LHhPqXsAod/Yrt3/G2/hOqfkTIWUVA170Z56uYPHKdyODh8SZAfBxs8sDl4A7EbVfMoezm22MKe2PRiSHRYIra9TpvU5GCHJ3kIzH1Qcz3tnd9YW4vc57Zw6WDZH2zEYP0dP4bI9/uAWoFZEdarmGVCHXPStLO3NrXv046+YSmvmuY64Ae2uojFx6D8pNag8v2ABa2Y1AVvwnWvmxPivbL6NvSPNcvkXqTzncY9yaS9ZSAxGRnsDL25OlQGhAr0yq4/IKDzZwvJNZDjzbAe9oEpJ2qZ8oMuYrqh34d1L0F2Sr7hJbHVMcEJ1whByaxTnIG5EXauKoEO/oPYh82IyScf34LSCB7+3D5hCQSYXrZffWKOVtVrxLPGhH/Psw7OMj9jLZys0G6ZLhypNINQ5Nej2vM1tsCddEQfQlTBjyzQO4uhozTMMdevBW+Q6m06Kqf9gphGB5264H5r9bWRrURScR8VEgNVxLD71B2D/Lpy8l3sXRC3+aEME73NwoY0nNAMgLpABRhTBc6ZZ3rpD9j9rPJP6uO4Drt4QA5mhOtTNHFnjanWCwwMvm5hxkoPzTmk1wBeqrjziW43dlSa254Aj+IBFB54uZkuFRFY8XV0ygwGTHtn3vEpgW24bi4DNLiMRiK1rtJkBNhNOiVqvZz51jQr9tGiMzQ6k5gpRadqrDqZMyAKttykwBjDl0qYyNwc1BM7PDiqfXtFjRVsEzNTPpRUwCtZGRNFVYkGtu8ta5EcKGBaiUu5fMZqMwaEMHk26hvFGV+ejMlp8bInD3zF5oJvh6XOY550xLSRKlah3RnGgKVk8vqtNSvOukp97YWPksnXTKlHi/iSPR9vAtunwCGGJU1pjIGlcJk4qpwTOwrYMYX0VJUCYpih5pu3lPUnI7sM+eyIAYDRAnCJQAGKGi7Mbyu9nd6djLPhGCJ4KxknBPd9buFy8p70AeTD16rWVQa2C5ZcCC4a1w9p2XIElBbVDMrsmjxtsqZeN1vCb0wUJs1uKHYcOxYkYBObEGZ/9196GJFsMevs+HK9/OhjAMr1MbogjJORMukXb0QWw0D+DhDe8w3eaQlILBPBZJ8/C6dFqFbqpKHOGHUcrnk+0qX7V8LgSZWvfHzYJl0+BgAK0b8e1PdZ+geTP28/QfOEvvdRJLZ7NDgneo+nyt4QrSCiItgbZ+LqNzv7BtkH0/jH9MC8oOt6zUUyipRtT6rT7a8Q9fMiJTv2gdLJtwZSgoUSXIVNFoQBKMu09KGxsjXAnXqrdVC1FkM6RsAZF1M2UFoCVNm+f/GHt9VijaHr68bibAQNmVQ7uXGklyeYkIFoCGwSevedMLbiopxrQNGEwGJEcrNKdiw+iZ1fTsNFH/5xxmL9f2jQCNcf/nVj79necxlV08tiBMCN1BXoY69Fr2OGOJONkPSOZkjnMlBoTZLhZtbkP0iC7uZAfMzkIVLL9DC4aCS4u9dmH7x3DktvqmFP1h80OEbvY1HZE923M3u9Y6pREpv9uv1sLaWJd9rSI8vbk+FXCqdfC9qYTMEpWkL1uDbuMoapM5Vu88HtBiKwsWHAcirZuuXna4D6sva7utouL5RPGy+trmYexyHwS4zEOhTfcrZWPIi52/hu6v/MUicaqIr4HPy7Qtqz34pRyBzthmZaAcxCC7xEj4NqgVAHxgoAxK0YzJTetl0V4GpoTvwtcxTQUlQtxDuOvVOfYswHPasvDSWhmerWVgDP+40WOdEapYH8tEmpDQcS2Ie4qaqyOjNhMA+WW7M9x05VAAbJLQuXMn5sfgkkHd3iB1699HJaS2nzcghEwEb7TOAiaLO1DpaysD2mplLZJj12u+JIoKSfmW7Ihd+KKOHug3k85wGofAZXVf74ZgYdGA+jk6U2w+aO6yFD1hEZxSkYLFTyYRWWRkWBqjF5mP+5K62b9sAj9B/RQolzQmuDsWZovVIid56ns618C2di58YXWY9D45fh5X7X0fdNmPGSQxUzGxwNecT7JDZhLTKOP6Q86eRAqi/Iyfxi3jdx+SwnDRIp2TXNeSua0oMNgYcbpAKROWHn3VXYq7xFdWLDc4FyIahr88Jp6mrbwiFRbyFpt5o2XYZIJ0XSaGTD/qApifjBjx34l++Gkm9Xr5GYCFNssS4cJTSEWqDds9i+pNm0bdxiFMsIwYjS/JJZ2P8yeMpbOjfB230Lf3FPhtda0ZD4saspQG2MLtyza1MU2jpFJRALV2TOKPiT9ALmo8dpyTeX49HRG4CGWnALptHo7TXeJaUnsbNY9hXSkXoEse9RssbFTtsXy3TsgjYNU8XQTPifKN8r23gZqmb6AmAQ9h8lphW3TvLBnLO9DAyCdGACxytIN3bY4dQqV4JN8RaEsI/BaHPYg5Lk7LQmb65u1Hi8yhN8drcL7jc0RYP2yBU6KUaLGks+B8Cca4bpZXSRN5QFI20mi61sc7O4IJNp5MlxeK46l1Z+Px86IimbGke95hIlazQ3CtPPhYQHc7374rUQ4z2gt/I8ceIAtC/YaI6qy5xz1DB1VJwLz3K9aR2jBXy2nvmH2m3/Mi8RbtICjscM11tiGGwCIhZgOqxWRZNcgfDdErEB7NRcrRNUAKAi8ACLQkK3J5V5JvwVMuyHMBEFQDvwginHTIAB2L5518Vo9Kx11kI9mUEIXY5eu5RCWtRo1GUTwBnGaRl952g/FdmTK0IdbahinWAXlJYF92y9/2BZwIXN2pANBtAmScSHxbD9xwAzGSa4Ul9xqAe6HFjIoQgmJ4oe1QUALkwWP0xM0LDS3Dgwuvv9dOBqWShxmKxWkSadxQl3ML+9YBGT0s1qTqMMs7yw3uLMVmhTmY63fA+ObNCoWYTKiGXeyk3qWHUuVmCKj3fsI9f96LcMDECIHqZL2PUp71YSqTEU/v6fWZoXjchxXA5pcksy1bdRwaXBnvDi2mzfvP/sannDNj/bxUVdoGuxJQJHf2LpMrr4R/ExVlz0+Za2EpOaO4gFamdYffalmLr85d4es2ijwXTwSwLsjHuZgc3WtNcy8TIc+3NyrH+qS2t8jSYvdPH3iyFl+YIqOMr2KnpGbnT3JjZot1AYux78kbBZuoSd6UqEWcEKacjD5KxuvCefq5PtaXfwMHeGj38YvewezNKLbRHqSPXuHbJvS0BM6fWtmSV5It2/NAT8GYUebV/FJ7BV4fv4MLA5r69ngchEPlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLAXWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": "RandomState(MT19937)"
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1672998995901243534,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbi0jzD+X26jmUwNC0kYq9dEV+7ukKoswAAgD8AAIA/gNAZvR2mrT4bpHQ7KzqNvmMSezxrVeY8AAAAAAAAAAAAW1C9ih67P8WsN7+hrHk+wS9VPUp+pT0AAAAAAAAAADOmvL2P7jy6h4A7ue9lObQ5hrC67epdOAAAgD8AAAAAM22ZPCkAArrrkAc4xS4CM9WeuLouGB+3AACAPwAAgD8ahAe9JQiRP6psEL1RgeO+/mxjvQOg9bsAAAAAAAAAAADkMbzuio68zPqLOxNxqzx5r/Y9x/GHvQAAgD8AAIA/mkK5vUhphLqlBX449liEMw2x+bpHzpO3AACAPwAAgD8z66w7KRA3ulknJr0W3t69Jqc0vDeExz4AAIA/AAAAABqdor1c2za6xSsFNpAgBjGrFhi5KakktQAAgD8AAIA/s+NEPXuKoLoenBY0i2FCrpqGDLipY6KzAACAPwAAgD8ADre9j9oIuiIpxLrN5Ti0gZD+uq5u5zkAAIA/AACAP8152T1SCvg8TXb+O6u6Vb7o+449/dYoPgAAAAAAAAAAZua5PUhzibpVMgQ2Ld6dMP0nR7uAEyC1AACAPwAAgD8zIOM8aZMovGV07zv5Uos8WM2JvU7wZj0AAIA/AACAP2YSZDzUfZc93QR2vn2bHr4Q6b69MJ9XPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4bchxuuzZ0CUhpRSlIwBbJRN6AOMAXSUR0C8KKWPkq+bdX2UKGgGaAloD0MIuMoTCDt0Z0CUhpRSlGgVTegDaBZHQLwv4mlZX+51fZQoaAZoCWgPQwiUpGsm38pIQJSGlFKUaBVL9mgWR0C8MM9y5qdpdX2UKGgGaAloD0MI3pBGBc5ZYkCUhpRSlGgVTegDaBZHQLwxrA80UGp1fZQoaAZoCWgPQwiFtTF2wkVMQJSGlFKUaBVLzGgWR0C8MuKKDTScdX2UKGgGaAloD0MI3qrrUM3LYkCUhpRSlGgVTegDaBZHQLwzE5z5oGp1fZQoaAZoCWgPQwiKO97kt9RnQJSGlFKUaBVN6ANoFkdAvDP9PFefI3V9lChoBmgJaA9DCF5kAn4N7mNAlIaUUpRoFU3oA2gWR0C8NvAsCkoGdX2UKGgGaAloD0MI+DO8WQP1ZECUhpRSlGgVTegDaBZHQLw3CqQzUI91fZQoaAZoCWgPQwjfawiOS9VhQJSGlFKUaBVN6ANoFkdAvDcLCBPKuHV9lChoBmgJaA9DCAOYMnDAhGFAlIaUUpRoFU3oA2gWR0C8Nx5oCdSVdX2UKGgGaAloD0MIkszqHW4TY0CUhpRSlGgVTegDaBZHQLw3Y2Qnx8V1fZQoaAZoCWgPQwi4H/DAwPpwQJSGlFKUaBVNOQJoFkdAvDhh96Tnq3V9lChoBmgJaA9DCOljPiBQMWdAlIaUUpRoFU3oA2gWR0C8OLy8jAzpdX2UKGgGaAloD0MIsoLfhpiWZUCUhpRSlGgVTegDaBZHQLw5ROxB3Rp1fZQoaAZoCWgPQwiR1a2eEzpkQJSGlFKUaBVN6ANoFkdAvDmCvjfelHV9lChoBmgJaA9DCJD11Oor+GBAlIaUUpRoFU3oA2gWR0C8OhL4rSVodX2UKGgGaAloD0MIXvI/+bsoZECUhpRSlGgVTegDaBZHQLw6GO1fE4x1fZQoaAZoCWgPQwjay7bTVldlQJSGlFKUaBVN6ANoFkdAvDotIvrWy3V9lChoBmgJaA9DCGwGuCCbPXFAlIaUUpRoFU0OAmgWR0C8QjPhQ3xXdX2UKGgGaAloD0MIXRYTm48EcUCUhpRSlGgVTXcDaBZHQLxCjbZezD51fZQoaAZoCWgPQwitF0M50XZnQJSGlFKUaBVN6ANoFkdAvELrFhoduHV9lChoBmgJaA9DCPdXj/vWJ2BAlIaUUpRoFU3oA2gWR0C8RDtoSL62dX2UKGgGaAloD0MInwCKkSWSbECUhpRSlGgVTeUBaBZHQLxE9mLtNSJ1fZQoaAZoCWgPQwjxS/28KddkQJSGlFKUaBVN6ANoFkdAvEUU2Ifr8nV9lChoBmgJaA9DCEWfjzLiNHFAlIaUUpRoFU1QA2gWR0C8Rf2OuJUHdX2UKGgGaAloD0MIJuSDns1mcECUhpRSlGgVTS4BaBZHQLxGCdu5z5p1fZQoaAZoCWgPQwiatKm6xzJuQJSGlFKUaBVNYQJoFkdAvEZ01YQrc3V9lChoBmgJaA9DCAqhgy7hamNAlIaUUpRoFU3oA2gWR0C8R34XCTEBdX2UKGgGaAloD0MIUyKJXsaCZECUhpRSlGgVTegDaBZHQLxHl3cHnlp1fZQoaAZoCWgPQwg4FakwNhVgQJSGlFKUaBVN6ANoFkdAvEeX0+TvA3V9lChoBmgJaA9DCHP3OT5ayG5AlIaUUpRoFU1UA2gWR0C8R6osI3R5dX2UKGgGaAloD0MIRBSTN8BkZ0CUhpRSlGgVTegDaBZHQLxI5tAcDKZ1fZQoaAZoCWgPQwiKHvgYLA9xQJSGlFKUaBVNKAJoFkdAvEkMdp7CznV9lChoBmgJaA9DCLg/Fw1Z6XBAlIaUUpRoFU0dAWgWR0C8SaBBAv+PdX2UKGgGaAloD0MIeCXJc33MZECUhpRSlGgVTegDaBZHQLxJ4YL9deJ1fZQoaAZoCWgPQwh1yqMb4R5nQJSGlFKUaBVN6ANoFkdAvEohkRSP2nV9lChoBmgJaA9DCPvqqkCtEXJAlIaUUpRoFU0mAmgWR0C8SoEJF9a2dX2UKGgGaAloD0MIFtwPeGCZYECUhpRSlGgVTegDaBZHQLxKvtUGVzJ1fZQoaAZoCWgPQwicUfNV8iFvQJSGlFKUaBVNLAFoFkdAvEsOt5le4XV9lChoBmgJaA9DCD0Og/nrxXFAlIaUUpRoFU3lAmgWR0C8S4nfVI7OdX2UKGgGaAloD0MIX7THC2khbkCUhpRSlGgVTQ0CaBZHQLxL5X2dupF1fZQoaAZoCWgPQwiNCwdCMvNxQJSGlFKUaBVNKgFoFkdAvEyD1rZam3V9lChoBmgJaA9DCJP+XgqPhXBAlIaUUpRoFU3FAmgWR0C8UeA79ycTdX2UKGgGaAloD0MISL99HfjccECUhpRSlGgVTVABaBZHQLxTEKw6hg51fZQoaAZoCWgPQwhBf6FHjKJwQJSGlFKUaBVNhgFoFkdAvFMxxLkCFXV9lChoBmgJaA9DCG3kuills3JAlIaUUpRoFU0YAWgWR0C8U2Ld8Aq/dX2UKGgGaAloD0MIwCMqVLd7ckCUhpRSlGgVTaoBaBZHQLxT64R28qZ1fZQoaAZoCWgPQwiRmnYxjRFyQJSGlFKUaBVNggFoFkdAvFRfZ6D5CXV9lChoBmgJaA9DCIwxsI6jDHBAlIaUUpRoFU3GA2gWR0C8VUxkmQbNdX2UKGgGaAloD0MIDJQUWACicECUhpRSlGgVTdcCaBZHQLxWizreImB1fZQoaAZoCWgPQwixqIjTybpgQJSGlFKUaBVN6ANoFkdAvFapiF0xM3V9lChoBmgJaA9DCOpcUUoIZ29AlIaUUpRoFU2SAmgWR0C8V16ISDh+dX2UKGgGaAloD0MIzy9K0F+YcECUhpRSlGgVTbYDaBZHQLxXyy/sVtZ1fZQoaAZoCWgPQwgjowOSsD80QJSGlFKUaBVL32gWR0C8V/33cpLFdX2UKGgGaAloD0MI4gLQKN3tYUCUhpRSlGgVTegDaBZHQLxYUvwEyL11fZQoaAZoCWgPQwhffNEeL91iQJSGlFKUaBVN6ANoFkdAvFhrlJYkmnV9lChoBmgJaA9DCEw1s5YCDHBAlIaUUpRoFU2lAWgWR0C8WICBshxHdX2UKGgGaAloD0MIkGeXb/3NbECUhpRSlGgVTZgCaBZHQLxZXOerdWR1fZQoaAZoCWgPQwiCVmDIauxsQJSGlFKUaBVN7AJoFkdAvFrKoLofS3V9lChoBmgJaA9DCA2Jeyz9GXJAlIaUUpRoFU1jAWgWR0C8W14Mz/IbdX2UKGgGaAloD0MIBYvDmd/cbECUhpRSlGgVTZQDaBZHQLxbqT8HfMx1fZQoaAZoCWgPQwi/YaJBCrRyQJSGlFKUaBVN+QJoFkdAvFwBhpg1FnV9lChoBmgJaA9DCBAlWvJ4UGZAlIaUUpRoFU3oA2gWR0C8XFBBiTdMdX2UKGgGaAloD0MIaY1BJ4SDcUCUhpRSlGgVTQ4CaBZHQLxcvLowEhd1fZQoaAZoCWgPQwjuXBjpBWtwQJSGlFKUaBVNKAFoFkdAvFzRYJVsDXV9lChoBmgJaA9DCFQ4glSKc3BAlIaUUpRoFU0PA2gWR0C8XQ2GRFI/dX2UKGgGaAloD0MIaAkyAioUckCUhpRSlGgVTaYBaBZHQLxdJOE/Spl1fZQoaAZoCWgPQwhN1xNdlyZsQJSGlFKUaBVNAQNoFkdAvF1DqqwQlXV9lChoBmgJaA9DCGkB2laz3XFAlIaUUpRoFU05AmgWR0C8Yy7g4wRHdX2UKGgGaAloD0MIQ+c1dgkecUCUhpRSlGgVTTgCaBZHQLxjdpEhJRR1fZQoaAZoCWgPQwhnRj8aTuhkQJSGlFKUaBVN6ANoFkdAvGOYZvUBn3V9lChoBmgJaA9DCKFkcmqnMnFAlIaUUpRoFU3YAmgWR0C8Y6NAxBVudX2UKGgGaAloD0MIxAjh0YZfcECUhpRSlGgVTXICaBZHQLxjo0jkdWB1fZQoaAZoCWgPQwhgPe5brV5wQJSGlFKUaBVNRgFoFkdAvGRUqvvBrXV9lChoBmgJaA9DCAjpKXII33JAlIaUUpRoFU0MAmgWR0C8ZX2gezUrdX2UKGgGaAloD0MI3A94YAC5cUCUhpRSlGgVTX8BaBZHQLxmQYvnKW91fZQoaAZoCWgPQwhwKHy2DhBuQJSGlFKUaBVNHgJoFkdAvGZa8RL9M3V9lChoBmgJaA9DCBAEyNCxIXBAlIaUUpRoFU3GAWgWR0C8Zr0yDZlGdX2UKGgGaAloD0MIPzkKEIV0b0CUhpRSlGgVTfABaBZHQLxnJ2b5M111fZQoaAZoCWgPQwjgvg6cM1xuQJSGlFKUaBVN1AFoFkdAvGcqLm6oVHV9lChoBmgJaA9DCIyd8BKc93FAlIaUUpRoFU1mAWgWR0C8Z7T0xubadX2UKGgGaAloD0MIYKxvYHJkcUCUhpRSlGgVTZEBaBZHQLxnt9srNGF1fZQoaAZoCWgPQwiJeOv8W5xyQJSGlFKUaBVNegFoFkdAvGfn1DjR2XV9lChoBmgJaA9DCN6vAny3XWZAlIaUUpRoFU3oA2gWR0C8aHP3N9pidX2UKGgGaAloD0MIWU5C6QutQ0CUhpRSlGgVS99oFkdAvGiqk+HJtHV9lChoBmgJaA9DCP1qDhDMim5AlIaUUpRoFU2oAmgWR0C8aKz67/XHdX2UKGgGaAloD0MIOPktOhmZcECUhpRSlGgVTf8BaBZHQLxpGaW5Yo11fZQoaAZoCWgPQwgsRl1rLwdwQJSGlFKUaBVNhAJoFkdAvGksZwXIl3V9lChoBmgJaA9DCJSGGoUkD3BAlIaUUpRoFU0YAmgWR0C8alCtNi6QdX2UKGgGaAloD0MIB+xq8hSJckCUhpRSlGgVTWcBaBZHQLxq+KSgXdl1fZQoaAZoCWgPQwi05sdfmsJwQJSGlFKUaBVNOgFoFkdAvGsQbhm5D3V9lChoBmgJaA9DCJWcE3towz5AlIaUUpRoFUvhaBZHQLxrHwEyLyd1fZQoaAZoCWgPQwhi2jf3V9FxQJSGlFKUaBVNSAFoFkdAvGs+QuEmIHV9lChoBmgJaA9DCJon1xTIlD1AlIaUUpRoFU0EAWgWR0C8a0tg8bJfdX2UKGgGaAloD0MIPZ0rSgm6YECUhpRSlGgVTegDaBZHQLxrkTxoZht1fZQoaAZoCWgPQwhP54pSQsQ3QJSGlFKUaBVL6WgWR0C8a6eruIAPdX2UKGgGaAloD0MImIbhI+KIbUCUhpRSlGgVTccBaBZHQLxr8QyhzvJ1fZQoaAZoCWgPQwgnvtpRnHBxQJSGlFKUaBVN0QJoFkdAvG08fPomonV9lChoBmgJaA9DCH16bMuAgz1AlIaUUpRoFUv0aBZHQLxtizu4PPN1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd5fcd33cf8de1735481b9b683c46105612303b8314aa750530f05c31a82e361
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67463473c9d0cacba9fe5945265368f10f15630b0a7f7cf61e9d6e4ae177f177
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (214 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 248.4250509682317, "std_reward": 24.847682933317788, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-06T10:25:39.893118"}