diffrxction commited on
Commit
1338e36
·
1 Parent(s): c17e5dc

PPO LunarLander-v2 trained agent for deep-rl-course by huggingface

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 286.73 +/- 18.54
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5559999af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5559999b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5559999c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5559999ca0>", "_build": "<function ActorCriticPolicy._build at 0x7f5559999d30>", "forward": "<function ActorCriticPolicy.forward at 0x7f5559999dc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5559999e50>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5559999ee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5559999f70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f555999e040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f555999e0d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5559db3dc0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVSQwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgtjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAszYll6sj3sg0cxL12d6jZ+Yu7gf9yUvJAa7o8QSzDzgqzaYiQ5ugEDfss0wv8ISPr4v30FoncTxgszL3HpgZBkqQ1PJ8Aaa00vqZPcAcvaS2ow77vMsFa/bCutMehnW0Io+tXwdV0jOlyVzCpZvlDQ1bwHi6QCIoCBfFhnmqimlvbJL3RQWqbx2lt/0rAa7atfRL11w13H7LBz+6OxaefGIQuUBXWnn195QRjA13hZothUMCnQUwJYsDPa/QrRbr/Bq3C7j4CZHIVsj7BI3rKYQcYHW6CpAU41KaxOBonJhTI2hr7GExcOKMIpAczSt6IutOZWFUz/MGWoAjppegXkd7iiVyDWct6AB5Eo7yQqyvTFG6Vt8SoyvGxC968IkBHRo8ayBslU/mRNQqoAci3JTriJU22k+dBT9LZSreGt60CEdgqf8aDAcWhSiYevmycLBCThG7yV4eRtfSzSD5Kb4lMkePfvPMdFGrbDfhaTltlwEQydOYFtFaJG1KmXW59BzSlx0QjR8/73NHK2/0kmijGLHl8TfgjlUYGwCbwuHEBNt2roZ/i+/U8/2Iigyk03oOeYjjg02TJ9vGF9YTc1wXMe+7N7VcRCgcx8f9gF3Mb4s4ngYmNN3jxlU89YVGXaKavaZrnvaIuQKT8NHEaEjksey+MOkG2F4q28eR2aBY8S28PvLY+2Ix5+e8b8FbW9ALkDz+Li+qVGQQfIDUrx+WRfF1Z9T/+hYvQ7xDL6UaHFlZVUluryzIJGmimiy41VC6UdGrrbvvuczsbKu5xaHj7vNh7R7wCNXeKUW1F4adjEPsGt8HujJo3DhciBet3M+56kNhvDIaH1P0ue38rOMHx7gxfwFPbA/KiZWKVE6MFeDqqavhF+kSVMfQApcFnU7rjeFnEICVejFIYVH6nKyLNf4Zdwkk/sGE0fS+T+TIB4anwCRUegwIpr4InPauPDM324MMRadOtZII5NoW0BpR1M13+Nckvmr8jQKJ1RtwxSUcHZnAVrJlDu81jN4GQt/+D5BTsLAAQ3nGlTucVn8pepihpDdwRzhFQw31Yejsypf36/JucFSafOUDfNO3E9d9hkaPrGjZQn0vHyVGkOKVHiUi2PEl68JQ5hSLeMdM/pozCPoA2kkAlqaozrDyUWOLbjFiMkLOPzIH0g+3hKRo3DwiapwiHxaHaCbFUIHJlXVC4vKlqvphaRwwwN9A1cN+K+XLSwya8Y8Z/R2meWIo6mGh7DJIQo5oCbbmfwRunyRtfm6FPrZSzZr23oP+B2ykSnh+eGOqiGwEnvOiXhH83V863u2v+9Xc30yAbkx71TOLDx/g679CMT4DaWJVTz9oSX6GC2+1BkKFqvJdku7c+UaBSuIgLRHEkfWbY15aMJKklfhzD6wzZXZuBQs874v22RMxnDrMvY4gFDkrR2Xe8hBDIEFCmU8UBFpJa4uP5y0n20tTgbLYTQjh3gvjkBKz4RI7tOXMtFVNQn+Py6YV1GdMsP5gYXp5qZkfakoZ/RQSfFAfkcWOeb7j/2E6EzpqIt5w9/URBFWo9b1cx4eZtAhsTZEyb128QvXkMfUoBYNJejC4uc8d6CgszlzGggmcJx+jU7+qUhlkL8NjhZK2nu8F+NXD74GKVB8qzFId2b9TAvmcVW1ME/l0ly0aFXyA4U/pLRXJYRAjcYAfk0AvDyu1LSLM+Im9alJx4Gp5jWOOPXgGcKS9bdyeEsMos+kdbp0loney1CXQ094OA8vdK8nlalF1PZpSik9kRK2C0o8UhAknyGU3sfg4/wtsywqbEUMMMmWSR8DlLNEl4x56mvZptXxD3wGzMjEntU2k55TtGCdNBrq+YTCCkknc69F7XyFaHkBsdc0NeJNZCfH7omllEMf7RbRHT2AeD63jXOr9/hIH4TZ/JZfxkxbgZTMiFX4W+uK67w3xzzAXMk88FAvGhQCExQyd7SKnvyEXIOPBO4ZRK0BBPgEC76+F790HvRuylALkGH7H6sIpnSGKguRh4rngLe4vRLnaI3E0Ch4rtT8v+dbaT1g0bPvPcaCjlc9znRDsjqb7TcvWVcgkaCwqTslKnpzrex+obsMlMemWRR4dYIVP7l0BmwPUGjMp9wNxAUyj/VI2L8Dfm0wexFxZk3Z/g0ppJbDVBBfef5sqpnBW0JqWPZgBIw9qjlQSfhSg2An84bdoLTHIydNT5xTAxZzl9rt/BKQYDNXvoXSWeoCiNMhcUcg1RjS/CgqkxIvMbc9YCsq9YCImj80EdwvmhiIa6dUSXioTsq4b+IXe5WTLe6iTfSn+IArUxpmQ7bjyKRtgagr8L5F8KwRzFzFkUkLm7GTw3qsiiBZJupLhvMqGdUIoOu3ynWt6QdqI1u5w2EFYAApWFmr6fE8mlW3JiBbiTJzgAA2q7vVqhk/bbIm2TxE8e5Ws+VKolg9AZtOrMkAhqgH/i0/eEvg70sn8dFxSMhJ6WGWiy9TR8dW3RUDtf2zZhKDWa2O43zf5udFf57KetQatGger5tHlsHPo5uZMHhWSdpe92h1tcchwExo5PlzUVHz2VaOGchJozCEDCJ+1KqpHu0Kk6Ux0efhtOHrS+wUEF+/Xt6Uuy5jIq5+OvtvQUl5uUpZUsmyaJXAZPETn3CaqmNI93MUbxZDdxTHXUwKK6wTFcXaagz5z/rR2QTXTVfYRwMljEeaDss6em4ciT/wzb/9dkrZKGKNHryrIAi/SDku08apjUHhARdHk6jXDRFZVX8bWUaJRm09tQk65fGqGdVDPZEXwi0O+ljc5rrSa+p7z8+1a188wDhhF80Kl4KeiSOJropKWRjvG2kqhqWOrE7TFD+2/XasS7o/pXb5gvDzdSdNcGF9/7WLmKMTl1uUjWtfEWysWAj/+BJcrlK4redSnOObtmpu+nueFW+GrXJLsEYJVXndLtKM2nHkdX1RM3i4rvdyxssI0kWeBcYMGjfJAp7dtkeKY88J5b4L8lZ1dVTgSMT7jtoo33M10qdHGJos0hcE0i6paG23T2pXBhfp1Ithh+DGoQU3cpWrpj81E2Z58UYKeatQ8qBeRKYnpEg04498dhtrzsXy5XOR8/slIEV8KqurJdbjyu399zm3V2ufhe1clhjZYyCqJ+qubjVx+wEpo98lO+qnmC8TA+wk2VcBMUg1CotnDlC0ZXkPblOmdXZupa9ktWOD9JhB5cJKIKNjOfDS1Ap/W339h8sTQdYWFgnG+WQo1snL1KATaQb8t7LmGdonIViT0qWQkRGf9ib/o6QEJ//Gi2x8TtqxusEr/Pf6rGtpNetl3Dm9sBTp+wNu3a07k4euxnr2cGLMllGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUSxx1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": "RandomState(MT19937)"}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVUQsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgQjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWwAkAAAAAAABXkR11iQsyjMR5ppgxyyrh76Lj2l9ImrO/3O1AkLcK+xjIVqPaSQq8N6oQYSpenIz42l6gyHGmhD7+99a6CO20wNGL7KyS+lCBqqS4grAZnEXcyvLlPTbcgu4VqlylR3dVpZjpoV5SJJBl0ukFsjNO0R8jmCND4ZSlmXV/t62D7dJh/DJs5RBhkPN72iURz3jTFYayYg6GWfhzd5Shv0VKOMytoG7ko8DAj1xHWhpuI9l4N4kUHcaYmVxcisrM76E/bbnYf/y+BXn4TKmUv8YRcf9yT2xF1OBwY/D6eG1FTingq2Bz+rcErv+MgYI8UXS22HPfuq6uBTKZG2nUNORRayc2gLf40NLXw37B9dHqy8tbqhWmJ6c99pQuvDjgmskd11wcvj31rY/IEHCGRBH3nNL7sgm7wkm1JbJdbda8SnAdJT2CGhVPZfgJPEBiBKYYzNV60K0DpOpaE9Qz4i5VDQzgW05Jamb9Ihx5OSb4cwQ+T2ow3uwv9GY8NMtxTDQs4WkTPhB8rpGgP0401QQwtEj0s2Cy8Nufu+CZZqUg3ObE0s9MHRG9z40RteDKEdzy6lor49DwBpXzltz9cokZAsVLBboiUyVqQEwjnVLLG4itTBaJjH+9Sbw/4ToEijLxrPjokjzIoMS+q4Dy6vobEw0S1TczTw+EVAi6ijdDWTnwCH+V94Q6qN+qbpBGj4zeCYw766qmhtPHc2aFu5I3RIrp2Sf6G4o36/2epX27jLkwYm9iG/TEe+vzrH8N6PS+CODvDgu6cQ4Fu8IDzF8U6h5S/Wj5pqJFlhckGyvfzaGdFB6/B3yMPS5umHaeH6I73glukalInn1YWaN/tagzflY4+b4d9YiNa42QE4f5jcvqgn5SLF2HnTxCcjsfTmgaKOU0Jna5nRFr6KV5Kcl/FDOI0RuEkRDvpC+8s4FDi4X4OLnGH95c3osKTSQUT7YXyzx+yIrb2Y+J/8yGQVHRTWimtbogv/9gASTGMiLRNtK29rAQe0MV8ndY7YL5u7NXn/f2ynlBog0iWNI4YzvXi/yc0nHzdXwEP8ZvCqtxWWG1323Ci01XvaFXAUYtbqyFLX4ibxSTzpV/ntvZ3bEkdcIKZJmrsPUd2mkP2mmuVfEF+DBiLYm07uVSwrtqx3uDS6icdtLMLOgUetDFjjU/p0a8IHq6W39AbcvxYRs/NRNZpM4jIM3UWwZd/wFum0WfXqkZT/o05Lk4Jyz7J61wDXBEZyT5NboaHG07OZ7YLpnJ6x0+uFRMsToH2dmcl2AXJjtnk28hG8V8NUH4xSF+RKBDLKUkpBT9qSot195b5V4uuyY40UN+ngKQiwsyI2u6N+EQvJtxJ7KeqH17M8nk4eiX26sY+CkUU5/qdMkvyEaXyTswqZISZ8ZTCdajbXToQQ50RvlMoFCvsbTXgQWMvKczFnVSmazhNcsGs1SAEpp7I3oqZ/XwvtjAMlzMurb8aynE10YOvdzvY94R7hwswAolwSELgVWfnRLsWuxUwbxnaTeiW9AuYm72LeVRilVFUVPB0oL2ohUkChCxx4hPrY4OQbol6jceYB6tM8D7tU+oFs3+s3cEhNosPabbqtsuprUBR/N16K27xbhq1nMyYy1jVomeTBlw7CsbSi1yMiXJW5sy11sBlBifGw6+AGX9eIKuuFsNgMaOf+WkTYStcKUTWKBOaThHXPW+1ToCVlfP/htfqVZPcaSHyuGKiouyD1B1610WuvV4MJfsixklGcW6u/866R7qcvObtt+uBDUxMmVmtOqMJc1kXxRIL9XP4K/19CBpFz/3JszLfm3iLYd/Zzw0R/x/AV1Hy8BL+frvinMCb7RK79PQ8BT0oIhCocpqLtIPMNMmnWiyvMMh22fohQXABjX7yUthTRx9y1ts0YcplWmB9bkqGrUimKk3+bHK5n4wR9pP8XRqSv3mvVdKs1tJnZOEvPAgOLHkwfGUZkWxtU0jwq+WSsyzk3OtAQbEqyf8/7TLd3kGKJD0jj4uIiz60xAk90+MhoJKZqID108q9D29pZfts3VTJeXvvdZ5VaWTOTDq0lvlXr5fjMxH+IUWlqTDBB/M4puMnbEOsNoW/UEz/1T++juG2FAH4tkJhXVANNtYGVHY1ys42eOpJmsBucA7+i9nj63IlRcfGhwI+3zQRT7kfCMQXTUkdw29z+/NJemzE+v322L/R2KvxVk1tnzoBPQJKLF6lZA1/7iS5TpTEg4bcydDzLnuCqLoq4nrnLj9AOTWG+LXqP6ghv8wcquX2fPSrd+0Zpaoo/68vmczHBzcwyCbdnXjpIl93IjSYeb0EljAcKxTWrZu0XM+pMlfbCdWVhbzP9ooQaExZ+td9UBsXjL1Seg0rgsIk1Z4JAd9ZUfPjLaFgbtdA94Z9Oj14+SD6V3LvKUMSfNoCrA5m5HjUEdZRhSCVpRrSalt7mPr/2ZEuJfvJudei2oB5IAPeFi8c7/cttJFsjrxjcADGgWa7YKuiAo8sM1D2kAvD9QRDwgMOZFEhF9bQe2GHGto2I7nib9+LMyvZ3bTsKKOprtEnJQp2zVlHpav4Cr+wkvasMjem/6oe5Yx48PB+7QaIn4kFXk/G1zr8otQUisVgrnaOKpA/gvHSvGtqgYhbNz6NpzGkpmw8MqO6hwx7W/3NtpZJV7fDwPGwJ+n1m2qFNm4CZL7Bkaa8Vr69oQGkekSFgsu2/KnL3EM8oxzsxLWFHAfovrNzUZIG2G72HqqXX5odoWtSxgtvWD97+OF+ijwbSVlnmE711S32UPdtGaJMNz3LJhxQb/71wbAUfdk0dqR0acJjdAKHmwkPA/jy+un11J0/cnwhK3GOOGGTbSfVouElxfdyxjY5id429QARbFOZSWgrODjlAD+FvCaninTckmGldakLdRFrt1UW0MYi9J/Jgq14+iQz04bJ0JXPuybMs2Ih07seXnn7eU6jdPNIpcqazA8goH9bySxyzilU5Y52LgUMfUhnuEz00LtScMjhorPeqMWCVH2OBlefI+Hme+pmvm/HmrTTAjpTSWd20+VByFrgZiknoSCEEuE1SPXy1e7BNU0Z+hSaJf0g6506J46H1Ak8XkpYeJXMNRjy8eo0E+VpVnf4wIBzV/xjod1xCmC01EJvibtYTieU1XBlVsbozXDrYnb0vHf3vrnk3NgEk2GyHtqG95aj1wF7nov/Av2CbzfNzM8/3uHH9QYpeNEo85NqTII8zUR8IhaaJyOT1nOFYrS/rfWtAMKZWPHnLDZ2E2U6Hxwr6YvFZ7Kv1QHK7bFx7RPEW71C5qbvjvoiHKywdv7HI75PoF7AImmUXOaX+qUaAmMAnU0lImIh5RSlChLA2gNTk5OSv////9K/////0sAdJRiTXAChZSMAUOUdJRSlIwDcG9zlEsBdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 1524736, "_total_timesteps": 1524000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673181449205985691, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVJQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMeS9ob21lL2RpZmZyYWN0L0Rlc2t0b3AvaHVnZ2luZ2ZhY2UtZGVlcHJsLWNlcnRpZmljYXRlLy52ZW52L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHkvaG9tZS9kaWZmcmFjdC9EZXNrdG9wL2h1Z2dpbmdmYWNlLWRlZXBybC1jZXJ0aWZpY2F0ZS8udmVudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAACaqTb5jLRM9w26YPuyOnL5Btxg75W4APQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0004829396325458646, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2bPnMnVdc0CUhpRSlIwBbJRNIwGMAXSUR0CSu/J40Mw2dX2UKGgGaAloD0MIOLpKdxcjcUCUhpRSlGgVS6xoFkdAkrxBHoX9BXV9lChoBmgJaA9DCLaizXEuT3FAlIaUUpRoFUvdaBZHQJK9mCoS+QF1fZQoaAZoCWgPQwgPtW0YhaFxQJSGlFKUaBVL8mgWR0CSvgt16mfodX2UKGgGaAloD0MI9Q8iGXKjc0CUhpRSlGgVS79oFkdAkr5lzdUKiXV9lChoBmgJaA9DCFZKz/QSv3JAlIaUUpRoFU0JAWgWR0CSvugFHJ9zdX2UKGgGaAloD0MIjNtoAO+ccECUhpRSlGgVS8JoFkdAksAstkFwDXV9lChoBmgJaA9DCE5gOq3bv3FAlIaUUpRoFUufaBZHQJLAeDdxhlV1fZQoaAZoCWgPQwgXDK65owlwQJSGlFKUaBVLxmgWR0CSwNWWhRIjdX2UKGgGaAloD0MIjA+zl+3IcUCUhpRSlGgVS9hoFkdAksE4hyKekHV9lChoBmgJaA9DCFKdDmT953JAlIaUUpRoFUvWaBZHQJLBnD3ueBh1fZQoaAZoCWgPQwhTzEHQ0SNlQJSGlFKUaBVN6ANoFkdAksTpYDDCQHV9lChoBmgJaA9DCGx8Jvvnh1FAlIaUUpRoFUt5aBZHQJLFIaWHDaZ1fZQoaAZoCWgPQwhgIXNlUGlvQJSGlFKUaBVL0GgWR0CSxmiTdLxqdX2UKGgGaAloD0MI4C9mS1YmcECUhpRSlGgVS75oFkdAksbBgy/KyXV9lChoBmgJaA9DCOhpwCDpgURAlIaUUpRoFUt7aBZHQJLG+l9Brvd1fZQoaAZoCWgPQwhJ9DKK5SByQJSGlFKUaBVLtmgWR0CSx05mRNh3dX2UKGgGaAloD0MIxHdi1oshDcCUhpRSlGgVS35oFkdAkseGbobGWHV9lChoBmgJaA9DCCi1F9G2XHJAlIaUUpRoFUujaBZHQJLH0qJ/G2l1fZQoaAZoCWgPQwhrmnecIndwQJSGlFKUaBVLs2gWR0CSyQe7+T/ydX2UKGgGaAloD0MIgbIpV3iicUCUhpRSlGgVS+ZoFkdAksl5mh/RV3V9lChoBmgJaA9DCIlDNpAuqExAlIaUUpRoFUuoaBZHQJLJw9zOopB1fZQoaAZoCWgPQwgQy2YOCSxyQJSGlFKUaBVL6WgWR0CSyjFxGUfQdX2UKGgGaAloD0MIDhE3p5IxJ0CUhpRSlGgVS3xoFkdAksppOnEVFnV9lChoBmgJaA9DCB/2QgEbm3JAlIaUUpRoFUvDaBZHQJLLr9ETg2t1fZQoaAZoCWgPQwjiIvd0tSJwQJSGlFKUaBVLxmgWR0CSzAp4bCJodX2UKGgGaAloD0MI3QiLirjcb0CUhpRSlGgVS8RoFkdAksxlkH2RJXV9lChoBmgJaA9DCOc3TDRIG0hAlIaUUpRoFUt8aBZHQJLMnsRg7YF1fZQoaAZoCWgPQwifk943/t5xQJSGlFKUaBVL/2gWR0CSzRbQkX1rdX2UKGgGaAloD0MInKiluRUyJECUhpRSlGgVS3hoFkdAks1MRcu8LHV9lChoBmgJaA9DCAU25+BZ5HBAlIaUUpRoFUvUaBZHQJLOlIQOFxp1fZQoaAZoCWgPQwjjxFc7CgdvQJSGlFKUaBVLyGgWR0CSzu+BpYcOdX2UKGgGaAloD0MIQrCqXv5XcUCUhpRSlGgVS9NoFkdAks9WNedCmnV9lChoBmgJaA9DCLZJRWPteHFAlIaUUpRoFUulaBZHQJLPo1VHWjJ1fZQoaAZoCWgPQwik3lM57UU7QJSGlFKUaBVLhWgWR0CSz987IT4+dX2UKGgGaAloD0MIyVht/p/4cUCUhpRSlGgVS9FoFkdAktBBm5DqnnV9lChoBmgJaA9DCGR47GexvXJAlIaUUpRoFUvwaBZHQJLRmIBRyfd1fZQoaAZoCWgPQwi9N4YAYLNwQJSGlFKUaBVL4mgWR0CS0gO8kD6ndX2UKGgGaAloD0MI8KMa9ruXckCUhpRSlGgVS9RoFkdAktJoCQtBfXV9lChoBmgJaA9DCN7oYz5gT3NAlIaUUpRoFU35AWgWR0CS1EnwG4ZudX2UKGgGaAloD0MITWpoA/C/ckCUhpRSlGgVS8JoFkdAktSifpUxVXV9lChoBmgJaA9DCBtGQfA4y3FAlIaUUpRoFUufaBZHQJLU6zUqhDh1fZQoaAZoCWgPQwi7fsFu2NxxQJSGlFKUaBVLyWgWR0CS1UakAPupdX2UKGgGaAloD0MIiZgSSfQCckCUhpRSlGgVS9xoFkdAktWpEYwZfnV9lChoBmgJaA9DCK9BX3o7E3JAlIaUUpRoFUvAaBZHQJLW7UlRgqp1fZQoaAZoCWgPQwhdwMsMG3pyQJSGlFKUaBVL7GgWR0CS12Lgn+hodX2UKGgGaAloD0MI9KljldJTQkCUhpRSlGgVS1RoFkdAkteJWaMJhXV9lChoBmgJaA9DCOo/a368i3FAlIaUUpRoFUvuaBZHQJLX+VdHDrJ1fZQoaAZoCWgPQwi0ImqiT41xQJSGlFKUaBVL02gWR0CS2FiyprDZdX2UKGgGaAloD0MIkx0bgbiDckCUhpRSlGgVS75oFkdAktmZmNBF/nV9lChoBmgJaA9DCCL6tfXTT3FAlIaUUpRoFU16AWgWR0CS2nNxEORUdX2UKGgGaAloD0MIomDGFKx1QUCUhpRSlGgVS3toFkdAktqq9CeEqXV9lChoBmgJaA9DCGoV/aEZtm5AlIaUUpRoFUu7aBZHQJLa/depn6F1fZQoaAZoCWgPQwhoJa34hsFwQJSGlFKUaBVL0WgWR0CS21y7PIGRdX2UKGgGaAloD0MIlMK8x1locUCUhpRSlGgVS7ZoFkdAktyW4NI9T3V9lChoBmgJaA9DCLhX5q26TnFAlIaUUpRoFUvgaBZHQJLdAofCAMF1fZQoaAZoCWgPQwjmsWZkkDtLQJSGlFKUaBVLcmgWR0CS3TeOXE61dX2UKGgGaAloD0MIQPm7d1RYbUCUhpRSlGgVS+9oFkdAkt2rLyMDOnV9lChoBmgJaA9DCB+8dmnDD01AlIaUUpRoFUunaBZHQJLd9iF0xM51fZQoaAZoCWgPQwgfv7fpDz1zQJSGlFKUaBVLvWgWR0CS3k+8oQWfdX2UKGgGaAloD0MIGsQHdvyJRkCUhpRSlGgVS6loFkdAkt+Gbb1yvXV9lChoBmgJaA9DCLtE9dbAdg3AlIaUUpRoFUtuaBZHQJLft0IToMd1fZQoaAZoCWgPQwhgyyvXm+1xQJSGlFKUaBVLomgWR0CS4ADUVi4KdX2UKGgGaAloD0MIYYkHlE3dc0CUhpRSlGgVS75oFkdAkuBaIrOJL3V9lChoBmgJaA9DCGHFqdbCIkBAlIaUUpRoFUuAaBZHQJLglFEy+Ht1fZQoaAZoCWgPQwj4FtaNt+pwQJSGlFKUaBVLxmgWR0CS4O7K7qY7dX2UKGgGaAloD0MIAad38X7tckCUhpRSlGgVS6loFkdAkuIk1EVnEnV9lChoBmgJaA9DCO4HPDDAOXFAlIaUUpRoFUvgaBZHQJLijyEtdzJ1fZQoaAZoCWgPQwgVVb/SOQtxQJSGlFKUaBVLv2gWR0CS4uV2Rq46dX2UKGgGaAloD0MIkZp2Mc2Ub0CUhpRSlGgVS8RoFkdAkuNCHRCx/3V9lChoBmgJaA9DCHzzGyZa2nFAlIaUUpRoFUusaBZHQJLjlEx7AtZ1fZQoaAZoCWgPQwgAcy1agPI4QJSGlFKUaBVLWGgWR0CS47y8SPELdX2UKGgGaAloD0MI7wG6LydfcUCUhpRSlGgVS6FoFkdAkuTqWom5UnV9lChoBmgJaA9DCOTWpNuSsXBAlIaUUpRoFUutaBZHQJLlOaLGaQV1fZQoaAZoCWgPQwhUq6+uSjRxQJSGlFKUaBVLw2gWR0CS5ZYKIBRydX2UKGgGaAloD0MIVtKKbyiOcUCUhpRSlGgVS7BoFkdAkuXpKFqSHXV9lChoBmgJaA9DCC0HeqgtBHBAlIaUUpRoFUvpaBZHQJLmWRcNYr91fZQoaAZoCWgPQwixbrw7MmFyQJSGlFKUaBVLw2gWR0CS55WJJoTPdX2UKGgGaAloD0MInWaBdgdscUCUhpRSlGgVS7ZoFkdAkufpimVJMHV9lChoBmgJaA9DCDqTNlX3nElAlIaUUpRoFUtWaBZHQJLoELVnVXp1fZQoaAZoCWgPQwgJNxlVRkVzQJSGlFKUaBVL0WgWR0CS6HKb8WKudX2UKGgGaAloD0MIfLd542T4cECUhpRSlGgVS8doFkdAkujNGmUGFHV9lChoBmgJaA9DCHeiJCRSYXJAlIaUUpRoFUvHaBZHQJLpKEi+tbN1fZQoaAZoCWgPQwjr4GBvot5yQJSGlFKUaBVLrWgWR0CS6mQDV6NVdX2UKGgGaAloD0MICAJk6FjBcUCUhpRSlGgVS7poFkdAkuq7uDzy0HV9lChoBmgJaA9DCCFZwARuj0xAlIaUUpRoFUthaBZHQJLq56Vt4zJ1fZQoaAZoCWgPQwgvaYzWkUNwQJSGlFKUaBVLtGgWR0CS6zn8KohqdX2UKGgGaAloD0MIMsueBDZbN0CUhpRSlGgVS4loFkdAkut4Nd7fHnV9lChoBmgJaA9DCChFK/eCinBAlIaUUpRoFUuyaBZHQJLryqvNeMR1fZQoaAZoCWgPQwjmBdhHZ0ZxQJSGlFKUaBVLuWgWR0CS7QKZ2IO6dX2UKGgGaAloD0MIZHYWvZPjcECUhpRSlGgVS8JoFkdAku1bypaRp3V9lChoBmgJaA9DCCCYo8evt3FAlIaUUpRoFU0YAWgWR0CS7fvNeMQ3dX2UKGgGaAloD0MIUYTU7ewoYUCUhpRSlGgVTegDaBZHQJLxgtNBWxR1fZQoaAZoCWgPQwhfRrHc0phNQJSGlFKUaBVLsWgWR0CS8dIZqEeydX2UKGgGaAloD0MI/RAbLNyHc0CUhpRSlGgVS/doFkdAkvJE7Sy+pXV9lChoBmgJaA9DCKwcWmQ7MnJAlIaUUpRoFUvMaBZHQJLzh/DtPYZ1fZQoaAZoCWgPQwi1M0xtKVxxQJSGlFKUaBVNEgFoFkdAkvQZgb6xgXV9lChoBmgJaA9DCPbOaKsSvG9AlIaUUpRoFUu3aBZHQJL0bBHkLhJ1fZQoaAZoCWgPQwgPY9LfS9tTQJSGlFKUaBVLr2gWR0CS9LzkZJkHdX2UKGgGaAloD0MIhSLdzym1bkCUhpRSlGgVS8poFkdAkvUbA+IM0HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5956, "n_steps": 1024, "gamma": 0.997, "gae_lambda": 0.98, "ent_coef": 0.02, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVJQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMeS9ob21lL2RpZmZyYWN0L0Rlc2t0b3AvaHVnZ2luZ2ZhY2UtZGVlcHJsLWNlcnRpZmljYXRlLy52ZW52L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHkvaG9tZS9kaWZmcmFjdC9EZXNrdG9wL2h1Z2dpbmdmYWNlLWRlZXBybC1jZXJ0aWZpY2F0ZS8udmVudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-56-generic-x86_64-with-glibc2.35 #62-Ubuntu SMP Tue Nov 22 19:54:14 UTC 2022", "Python": "3.9.13", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.1", "Gym": "0.21.0"}}
ppo-LunarLander-v2-rerun.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad3758830d5841ca8c94ce859c4d7e6048d167caf7923d2bf5facd53ba933975
3
+ size 154084
ppo-LunarLander-v2-rerun/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2-rerun/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5559999af0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5559999b80>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5559999c10>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5559999ca0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f5559999d30>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f5559999dc0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5559999e50>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f5559999ee0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5559999f70>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f555999e040>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f555999e0d0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc._abc_data object at 0x7f5559db3dc0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVSQwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgtjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAszYll6sj3sg0cxL12d6jZ+Yu7gf9yUvJAa7o8QSzDzgqzaYiQ5ugEDfss0wv8ISPr4v30FoncTxgszL3HpgZBkqQ1PJ8Aaa00vqZPcAcvaS2ow77vMsFa/bCutMehnW0Io+tXwdV0jOlyVzCpZvlDQ1bwHi6QCIoCBfFhnmqimlvbJL3RQWqbx2lt/0rAa7atfRL11w13H7LBz+6OxaefGIQuUBXWnn195QRjA13hZothUMCnQUwJYsDPa/QrRbr/Bq3C7j4CZHIVsj7BI3rKYQcYHW6CpAU41KaxOBonJhTI2hr7GExcOKMIpAczSt6IutOZWFUz/MGWoAjppegXkd7iiVyDWct6AB5Eo7yQqyvTFG6Vt8SoyvGxC968IkBHRo8ayBslU/mRNQqoAci3JTriJU22k+dBT9LZSreGt60CEdgqf8aDAcWhSiYevmycLBCThG7yV4eRtfSzSD5Kb4lMkePfvPMdFGrbDfhaTltlwEQydOYFtFaJG1KmXW59BzSlx0QjR8/73NHK2/0kmijGLHl8TfgjlUYGwCbwuHEBNt2roZ/i+/U8/2Iigyk03oOeYjjg02TJ9vGF9YTc1wXMe+7N7VcRCgcx8f9gF3Mb4s4ngYmNN3jxlU89YVGXaKavaZrnvaIuQKT8NHEaEjksey+MOkG2F4q28eR2aBY8S28PvLY+2Ix5+e8b8FbW9ALkDz+Li+qVGQQfIDUrx+WRfF1Z9T/+hYvQ7xDL6UaHFlZVUluryzIJGmimiy41VC6UdGrrbvvuczsbKu5xaHj7vNh7R7wCNXeKUW1F4adjEPsGt8HujJo3DhciBet3M+56kNhvDIaH1P0ue38rOMHx7gxfwFPbA/KiZWKVE6MFeDqqavhF+kSVMfQApcFnU7rjeFnEICVejFIYVH6nKyLNf4Zdwkk/sGE0fS+T+TIB4anwCRUegwIpr4InPauPDM324MMRadOtZII5NoW0BpR1M13+Nckvmr8jQKJ1RtwxSUcHZnAVrJlDu81jN4GQt/+D5BTsLAAQ3nGlTucVn8pepihpDdwRzhFQw31Yejsypf36/JucFSafOUDfNO3E9d9hkaPrGjZQn0vHyVGkOKVHiUi2PEl68JQ5hSLeMdM/pozCPoA2kkAlqaozrDyUWOLbjFiMkLOPzIH0g+3hKRo3DwiapwiHxaHaCbFUIHJlXVC4vKlqvphaRwwwN9A1cN+K+XLSwya8Y8Z/R2meWIo6mGh7DJIQo5oCbbmfwRunyRtfm6FPrZSzZr23oP+B2ykSnh+eGOqiGwEnvOiXhH83V863u2v+9Xc30yAbkx71TOLDx/g679CMT4DaWJVTz9oSX6GC2+1BkKFqvJdku7c+UaBSuIgLRHEkfWbY15aMJKklfhzD6wzZXZuBQs874v22RMxnDrMvY4gFDkrR2Xe8hBDIEFCmU8UBFpJa4uP5y0n20tTgbLYTQjh3gvjkBKz4RI7tOXMtFVNQn+Py6YV1GdMsP5gYXp5qZkfakoZ/RQSfFAfkcWOeb7j/2E6EzpqIt5w9/URBFWo9b1cx4eZtAhsTZEyb128QvXkMfUoBYNJejC4uc8d6CgszlzGggmcJx+jU7+qUhlkL8NjhZK2nu8F+NXD74GKVB8qzFId2b9TAvmcVW1ME/l0ly0aFXyA4U/pLRXJYRAjcYAfk0AvDyu1LSLM+Im9alJx4Gp5jWOOPXgGcKS9bdyeEsMos+kdbp0loney1CXQ094OA8vdK8nlalF1PZpSik9kRK2C0o8UhAknyGU3sfg4/wtsywqbEUMMMmWSR8DlLNEl4x56mvZptXxD3wGzMjEntU2k55TtGCdNBrq+YTCCkknc69F7XyFaHkBsdc0NeJNZCfH7omllEMf7RbRHT2AeD63jXOr9/hIH4TZ/JZfxkxbgZTMiFX4W+uK67w3xzzAXMk88FAvGhQCExQyd7SKnvyEXIOPBO4ZRK0BBPgEC76+F790HvRuylALkGH7H6sIpnSGKguRh4rngLe4vRLnaI3E0Ch4rtT8v+dbaT1g0bPvPcaCjlc9znRDsjqb7TcvWVcgkaCwqTslKnpzrex+obsMlMemWRR4dYIVP7l0BmwPUGjMp9wNxAUyj/VI2L8Dfm0wexFxZk3Z/g0ppJbDVBBfef5sqpnBW0JqWPZgBIw9qjlQSfhSg2An84bdoLTHIydNT5xTAxZzl9rt/BKQYDNXvoXSWeoCiNMhcUcg1RjS/CgqkxIvMbc9YCsq9YCImj80EdwvmhiIa6dUSXioTsq4b+IXe5WTLe6iTfSn+IArUxpmQ7bjyKRtgagr8L5F8KwRzFzFkUkLm7GTw3qsiiBZJupLhvMqGdUIoOu3ynWt6QdqI1u5w2EFYAApWFmr6fE8mlW3JiBbiTJzgAA2q7vVqhk/bbIm2TxE8e5Ws+VKolg9AZtOrMkAhqgH/i0/eEvg70sn8dFxSMhJ6WGWiy9TR8dW3RUDtf2zZhKDWa2O43zf5udFf57KetQatGger5tHlsHPo5uZMHhWSdpe92h1tcchwExo5PlzUVHz2VaOGchJozCEDCJ+1KqpHu0Kk6Ux0efhtOHrS+wUEF+/Xt6Uuy5jIq5+OvtvQUl5uUpZUsmyaJXAZPETn3CaqmNI93MUbxZDdxTHXUwKK6wTFcXaagz5z/rR2QTXTVfYRwMljEeaDss6em4ciT/wzb/9dkrZKGKNHryrIAi/SDku08apjUHhARdHk6jXDRFZVX8bWUaJRm09tQk65fGqGdVDPZEXwi0O+ljc5rrSa+p7z8+1a188wDhhF80Kl4KeiSOJropKWRjvG2kqhqWOrE7TFD+2/XasS7o/pXb5gvDzdSdNcGF9/7WLmKMTl1uUjWtfEWysWAj/+BJcrlK4redSnOObtmpu+nueFW+GrXJLsEYJVXndLtKM2nHkdX1RM3i4rvdyxssI0kWeBcYMGjfJAp7dtkeKY88J5b4L8lZ1dVTgSMT7jtoo33M10qdHGJos0hcE0i6paG23T2pXBhfp1Ithh+DGoQU3cpWrpj81E2Z58UYKeatQ8qBeRKYnpEg04498dhtrzsXy5XOR8/slIEV8KqurJdbjyu399zm3V2ufhe1clhjZYyCqJ+qubjVx+wEpo98lO+qnmC8TA+wk2VcBMUg1CotnDlC0ZXkPblOmdXZupa9ktWOD9JhB5cJKIKNjOfDS1Ap/W339h8sTQdYWFgnG+WQo1snL1KATaQb8t7LmGdonIViT0qWQkRGf9ib/o6QEJ//Gi2x8TtqxusEr/Pf6rGtpNetl3Dm9sBTp+wNu3a07k4euxnr2cGLMllGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUSxx1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": "RandomState(MT19937)"
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVUQsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgQjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWwAkAAAAAAABXkR11iQsyjMR5ppgxyyrh76Lj2l9ImrO/3O1AkLcK+xjIVqPaSQq8N6oQYSpenIz42l6gyHGmhD7+99a6CO20wNGL7KyS+lCBqqS4grAZnEXcyvLlPTbcgu4VqlylR3dVpZjpoV5SJJBl0ukFsjNO0R8jmCND4ZSlmXV/t62D7dJh/DJs5RBhkPN72iURz3jTFYayYg6GWfhzd5Shv0VKOMytoG7ko8DAj1xHWhpuI9l4N4kUHcaYmVxcisrM76E/bbnYf/y+BXn4TKmUv8YRcf9yT2xF1OBwY/D6eG1FTingq2Bz+rcErv+MgYI8UXS22HPfuq6uBTKZG2nUNORRayc2gLf40NLXw37B9dHqy8tbqhWmJ6c99pQuvDjgmskd11wcvj31rY/IEHCGRBH3nNL7sgm7wkm1JbJdbda8SnAdJT2CGhVPZfgJPEBiBKYYzNV60K0DpOpaE9Qz4i5VDQzgW05Jamb9Ihx5OSb4cwQ+T2ow3uwv9GY8NMtxTDQs4WkTPhB8rpGgP0401QQwtEj0s2Cy8Nufu+CZZqUg3ObE0s9MHRG9z40RteDKEdzy6lor49DwBpXzltz9cokZAsVLBboiUyVqQEwjnVLLG4itTBaJjH+9Sbw/4ToEijLxrPjokjzIoMS+q4Dy6vobEw0S1TczTw+EVAi6ijdDWTnwCH+V94Q6qN+qbpBGj4zeCYw766qmhtPHc2aFu5I3RIrp2Sf6G4o36/2epX27jLkwYm9iG/TEe+vzrH8N6PS+CODvDgu6cQ4Fu8IDzF8U6h5S/Wj5pqJFlhckGyvfzaGdFB6/B3yMPS5umHaeH6I73glukalInn1YWaN/tagzflY4+b4d9YiNa42QE4f5jcvqgn5SLF2HnTxCcjsfTmgaKOU0Jna5nRFr6KV5Kcl/FDOI0RuEkRDvpC+8s4FDi4X4OLnGH95c3osKTSQUT7YXyzx+yIrb2Y+J/8yGQVHRTWimtbogv/9gASTGMiLRNtK29rAQe0MV8ndY7YL5u7NXn/f2ynlBog0iWNI4YzvXi/yc0nHzdXwEP8ZvCqtxWWG1323Ci01XvaFXAUYtbqyFLX4ibxSTzpV/ntvZ3bEkdcIKZJmrsPUd2mkP2mmuVfEF+DBiLYm07uVSwrtqx3uDS6icdtLMLOgUetDFjjU/p0a8IHq6W39AbcvxYRs/NRNZpM4jIM3UWwZd/wFum0WfXqkZT/o05Lk4Jyz7J61wDXBEZyT5NboaHG07OZ7YLpnJ6x0+uFRMsToH2dmcl2AXJjtnk28hG8V8NUH4xSF+RKBDLKUkpBT9qSot195b5V4uuyY40UN+ngKQiwsyI2u6N+EQvJtxJ7KeqH17M8nk4eiX26sY+CkUU5/qdMkvyEaXyTswqZISZ8ZTCdajbXToQQ50RvlMoFCvsbTXgQWMvKczFnVSmazhNcsGs1SAEpp7I3oqZ/XwvtjAMlzMurb8aynE10YOvdzvY94R7hwswAolwSELgVWfnRLsWuxUwbxnaTeiW9AuYm72LeVRilVFUVPB0oL2ohUkChCxx4hPrY4OQbol6jceYB6tM8D7tU+oFs3+s3cEhNosPabbqtsuprUBR/N16K27xbhq1nMyYy1jVomeTBlw7CsbSi1yMiXJW5sy11sBlBifGw6+AGX9eIKuuFsNgMaOf+WkTYStcKUTWKBOaThHXPW+1ToCVlfP/htfqVZPcaSHyuGKiouyD1B1610WuvV4MJfsixklGcW6u/866R7qcvObtt+uBDUxMmVmtOqMJc1kXxRIL9XP4K/19CBpFz/3JszLfm3iLYd/Zzw0R/x/AV1Hy8BL+frvinMCb7RK79PQ8BT0oIhCocpqLtIPMNMmnWiyvMMh22fohQXABjX7yUthTRx9y1ts0YcplWmB9bkqGrUimKk3+bHK5n4wR9pP8XRqSv3mvVdKs1tJnZOEvPAgOLHkwfGUZkWxtU0jwq+WSsyzk3OtAQbEqyf8/7TLd3kGKJD0jj4uIiz60xAk90+MhoJKZqID108q9D29pZfts3VTJeXvvdZ5VaWTOTDq0lvlXr5fjMxH+IUWlqTDBB/M4puMnbEOsNoW/UEz/1T++juG2FAH4tkJhXVANNtYGVHY1ys42eOpJmsBucA7+i9nj63IlRcfGhwI+3zQRT7kfCMQXTUkdw29z+/NJemzE+v322L/R2KvxVk1tnzoBPQJKLF6lZA1/7iS5TpTEg4bcydDzLnuCqLoq4nrnLj9AOTWG+LXqP6ghv8wcquX2fPSrd+0Zpaoo/68vmczHBzcwyCbdnXjpIl93IjSYeb0EljAcKxTWrZu0XM+pMlfbCdWVhbzP9ooQaExZ+td9UBsXjL1Seg0rgsIk1Z4JAd9ZUfPjLaFgbtdA94Z9Oj14+SD6V3LvKUMSfNoCrA5m5HjUEdZRhSCVpRrSalt7mPr/2ZEuJfvJudei2oB5IAPeFi8c7/cttJFsjrxjcADGgWa7YKuiAo8sM1D2kAvD9QRDwgMOZFEhF9bQe2GHGto2I7nib9+LMyvZ3bTsKKOprtEnJQp2zVlHpav4Cr+wkvasMjem/6oe5Yx48PB+7QaIn4kFXk/G1zr8otQUisVgrnaOKpA/gvHSvGtqgYhbNz6NpzGkpmw8MqO6hwx7W/3NtpZJV7fDwPGwJ+n1m2qFNm4CZL7Bkaa8Vr69oQGkekSFgsu2/KnL3EM8oxzsxLWFHAfovrNzUZIG2G72HqqXX5odoWtSxgtvWD97+OF+ijwbSVlnmE711S32UPdtGaJMNz3LJhxQb/71wbAUfdk0dqR0acJjdAKHmwkPA/jy+un11J0/cnwhK3GOOGGTbSfVouElxfdyxjY5id429QARbFOZSWgrODjlAD+FvCaninTckmGldakLdRFrt1UW0MYi9J/Jgq14+iQz04bJ0JXPuybMs2Ih07seXnn7eU6jdPNIpcqazA8goH9bySxyzilU5Y52LgUMfUhnuEz00LtScMjhorPeqMWCVH2OBlefI+Hme+pmvm/HmrTTAjpTSWd20+VByFrgZiknoSCEEuE1SPXy1e7BNU0Z+hSaJf0g6506J46H1Ak8XkpYeJXMNRjy8eo0E+VpVnf4wIBzV/xjod1xCmC01EJvibtYTieU1XBlVsbozXDrYnb0vHf3vrnk3NgEk2GyHtqG95aj1wF7nov/Av2CbzfNzM8/3uHH9QYpeNEo85NqTII8zUR8IhaaJyOT1nOFYrS/rfWtAMKZWPHnLDZ2E2U6Hxwr6YvFZ7Kv1QHK7bFx7RPEW71C5qbvjvoiHKywdv7HI75PoF7AImmUXOaX+qUaAmMAnU0lImIh5RSlChLA2gNTk5OSv////9K/////0sAdJRiTXAChZSMAUOUdJRSlIwDcG9zlEsBdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": "RandomState(MT19937)"
43
+ },
44
+ "n_envs": 1,
45
+ "num_timesteps": 1524736,
46
+ "_total_timesteps": 1524000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673181449205985691,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVJQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMeS9ob21lL2RpZmZyYWN0L0Rlc2t0b3AvaHVnZ2luZ2ZhY2UtZGVlcHJsLWNlcnRpZmljYXRlLy52ZW52L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHkvaG9tZS9kaWZmcmFjdC9EZXNrdG9wL2h1Z2dpbmdmYWNlLWRlZXBybC1jZXJ0aWZpY2F0ZS8udmVudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAACaqTb5jLRM9w26YPuyOnL5Btxg75W4APQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.0004829396325458646,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVJRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2bPnMnVdc0CUhpRSlIwBbJRNIwGMAXSUR0CSu/J40Mw2dX2UKGgGaAloD0MIOLpKdxcjcUCUhpRSlGgVS6xoFkdAkrxBHoX9BXV9lChoBmgJaA9DCLaizXEuT3FAlIaUUpRoFUvdaBZHQJK9mCoS+QF1fZQoaAZoCWgPQwgPtW0YhaFxQJSGlFKUaBVL8mgWR0CSvgt16mfodX2UKGgGaAloD0MI9Q8iGXKjc0CUhpRSlGgVS79oFkdAkr5lzdUKiXV9lChoBmgJaA9DCFZKz/QSv3JAlIaUUpRoFU0JAWgWR0CSvugFHJ9zdX2UKGgGaAloD0MIjNtoAO+ccECUhpRSlGgVS8JoFkdAksAstkFwDXV9lChoBmgJaA9DCE5gOq3bv3FAlIaUUpRoFUufaBZHQJLAeDdxhlV1fZQoaAZoCWgPQwgXDK65owlwQJSGlFKUaBVLxmgWR0CSwNWWhRIjdX2UKGgGaAloD0MIjA+zl+3IcUCUhpRSlGgVS9hoFkdAksE4hyKekHV9lChoBmgJaA9DCFKdDmT953JAlIaUUpRoFUvWaBZHQJLBnD3ueBh1fZQoaAZoCWgPQwhTzEHQ0SNlQJSGlFKUaBVN6ANoFkdAksTpYDDCQHV9lChoBmgJaA9DCGx8Jvvnh1FAlIaUUpRoFUt5aBZHQJLFIaWHDaZ1fZQoaAZoCWgPQwhgIXNlUGlvQJSGlFKUaBVL0GgWR0CSxmiTdLxqdX2UKGgGaAloD0MI4C9mS1YmcECUhpRSlGgVS75oFkdAksbBgy/KyXV9lChoBmgJaA9DCOhpwCDpgURAlIaUUpRoFUt7aBZHQJLG+l9Brvd1fZQoaAZoCWgPQwhJ9DKK5SByQJSGlFKUaBVLtmgWR0CSx05mRNh3dX2UKGgGaAloD0MIxHdi1oshDcCUhpRSlGgVS35oFkdAkseGbobGWHV9lChoBmgJaA9DCCi1F9G2XHJAlIaUUpRoFUujaBZHQJLH0qJ/G2l1fZQoaAZoCWgPQwhrmnecIndwQJSGlFKUaBVLs2gWR0CSyQe7+T/ydX2UKGgGaAloD0MIgbIpV3iicUCUhpRSlGgVS+ZoFkdAksl5mh/RV3V9lChoBmgJaA9DCIlDNpAuqExAlIaUUpRoFUuoaBZHQJLJw9zOopB1fZQoaAZoCWgPQwgQy2YOCSxyQJSGlFKUaBVL6WgWR0CSyjFxGUfQdX2UKGgGaAloD0MIDhE3p5IxJ0CUhpRSlGgVS3xoFkdAksppOnEVFnV9lChoBmgJaA9DCB/2QgEbm3JAlIaUUpRoFUvDaBZHQJLLr9ETg2t1fZQoaAZoCWgPQwjiIvd0tSJwQJSGlFKUaBVLxmgWR0CSzAp4bCJodX2UKGgGaAloD0MI3QiLirjcb0CUhpRSlGgVS8RoFkdAksxlkH2RJXV9lChoBmgJaA9DCOc3TDRIG0hAlIaUUpRoFUt8aBZHQJLMnsRg7YF1fZQoaAZoCWgPQwifk943/t5xQJSGlFKUaBVL/2gWR0CSzRbQkX1rdX2UKGgGaAloD0MInKiluRUyJECUhpRSlGgVS3hoFkdAks1MRcu8LHV9lChoBmgJaA9DCAU25+BZ5HBAlIaUUpRoFUvUaBZHQJLOlIQOFxp1fZQoaAZoCWgPQwjjxFc7CgdvQJSGlFKUaBVLyGgWR0CSzu+BpYcOdX2UKGgGaAloD0MIQrCqXv5XcUCUhpRSlGgVS9NoFkdAks9WNedCmnV9lChoBmgJaA9DCLZJRWPteHFAlIaUUpRoFUulaBZHQJLPo1VHWjJ1fZQoaAZoCWgPQwik3lM57UU7QJSGlFKUaBVLhWgWR0CSz987IT4+dX2UKGgGaAloD0MIyVht/p/4cUCUhpRSlGgVS9FoFkdAktBBm5DqnnV9lChoBmgJaA9DCGR47GexvXJAlIaUUpRoFUvwaBZHQJLRmIBRyfd1fZQoaAZoCWgPQwi9N4YAYLNwQJSGlFKUaBVL4mgWR0CS0gO8kD6ndX2UKGgGaAloD0MI8KMa9ruXckCUhpRSlGgVS9RoFkdAktJoCQtBfXV9lChoBmgJaA9DCN7oYz5gT3NAlIaUUpRoFU35AWgWR0CS1EnwG4ZudX2UKGgGaAloD0MITWpoA/C/ckCUhpRSlGgVS8JoFkdAktSifpUxVXV9lChoBmgJaA9DCBtGQfA4y3FAlIaUUpRoFUufaBZHQJLU6zUqhDh1fZQoaAZoCWgPQwi7fsFu2NxxQJSGlFKUaBVLyWgWR0CS1UakAPupdX2UKGgGaAloD0MIiZgSSfQCckCUhpRSlGgVS9xoFkdAktWpEYwZfnV9lChoBmgJaA9DCK9BX3o7E3JAlIaUUpRoFUvAaBZHQJLW7UlRgqp1fZQoaAZoCWgPQwhdwMsMG3pyQJSGlFKUaBVL7GgWR0CS12Lgn+hodX2UKGgGaAloD0MI9KljldJTQkCUhpRSlGgVS1RoFkdAkteJWaMJhXV9lChoBmgJaA9DCOo/a368i3FAlIaUUpRoFUvuaBZHQJLX+VdHDrJ1fZQoaAZoCWgPQwi0ImqiT41xQJSGlFKUaBVL02gWR0CS2FiyprDZdX2UKGgGaAloD0MIkx0bgbiDckCUhpRSlGgVS75oFkdAktmZmNBF/nV9lChoBmgJaA9DCCL6tfXTT3FAlIaUUpRoFU16AWgWR0CS2nNxEORUdX2UKGgGaAloD0MIomDGFKx1QUCUhpRSlGgVS3toFkdAktqq9CeEqXV9lChoBmgJaA9DCGoV/aEZtm5AlIaUUpRoFUu7aBZHQJLa/depn6F1fZQoaAZoCWgPQwhoJa34hsFwQJSGlFKUaBVL0WgWR0CS21y7PIGRdX2UKGgGaAloD0MIlMK8x1locUCUhpRSlGgVS7ZoFkdAktyW4NI9T3V9lChoBmgJaA9DCLhX5q26TnFAlIaUUpRoFUvgaBZHQJLdAofCAMF1fZQoaAZoCWgPQwjmsWZkkDtLQJSGlFKUaBVLcmgWR0CS3TeOXE61dX2UKGgGaAloD0MIQPm7d1RYbUCUhpRSlGgVS+9oFkdAkt2rLyMDOnV9lChoBmgJaA9DCB+8dmnDD01AlIaUUpRoFUunaBZHQJLd9iF0xM51fZQoaAZoCWgPQwgfv7fpDz1zQJSGlFKUaBVLvWgWR0CS3k+8oQWfdX2UKGgGaAloD0MIGsQHdvyJRkCUhpRSlGgVS6loFkdAkt+Gbb1yvXV9lChoBmgJaA9DCLtE9dbAdg3AlIaUUpRoFUtuaBZHQJLft0IToMd1fZQoaAZoCWgPQwhgyyvXm+1xQJSGlFKUaBVLomgWR0CS4ADUVi4KdX2UKGgGaAloD0MIYYkHlE3dc0CUhpRSlGgVS75oFkdAkuBaIrOJL3V9lChoBmgJaA9DCGHFqdbCIkBAlIaUUpRoFUuAaBZHQJLglFEy+Ht1fZQoaAZoCWgPQwj4FtaNt+pwQJSGlFKUaBVLxmgWR0CS4O7K7qY7dX2UKGgGaAloD0MIAad38X7tckCUhpRSlGgVS6loFkdAkuIk1EVnEnV9lChoBmgJaA9DCO4HPDDAOXFAlIaUUpRoFUvgaBZHQJLijyEtdzJ1fZQoaAZoCWgPQwgVVb/SOQtxQJSGlFKUaBVLv2gWR0CS4uV2Rq46dX2UKGgGaAloD0MIkZp2Mc2Ub0CUhpRSlGgVS8RoFkdAkuNCHRCx/3V9lChoBmgJaA9DCHzzGyZa2nFAlIaUUpRoFUusaBZHQJLjlEx7AtZ1fZQoaAZoCWgPQwgAcy1agPI4QJSGlFKUaBVLWGgWR0CS47y8SPELdX2UKGgGaAloD0MI7wG6LydfcUCUhpRSlGgVS6FoFkdAkuTqWom5UnV9lChoBmgJaA9DCOTWpNuSsXBAlIaUUpRoFUutaBZHQJLlOaLGaQV1fZQoaAZoCWgPQwhUq6+uSjRxQJSGlFKUaBVLw2gWR0CS5ZYKIBRydX2UKGgGaAloD0MIVtKKbyiOcUCUhpRSlGgVS7BoFkdAkuXpKFqSHXV9lChoBmgJaA9DCC0HeqgtBHBAlIaUUpRoFUvpaBZHQJLmWRcNYr91fZQoaAZoCWgPQwixbrw7MmFyQJSGlFKUaBVLw2gWR0CS55WJJoTPdX2UKGgGaAloD0MInWaBdgdscUCUhpRSlGgVS7ZoFkdAkufpimVJMHV9lChoBmgJaA9DCDqTNlX3nElAlIaUUpRoFUtWaBZHQJLoELVnVXp1fZQoaAZoCWgPQwgJNxlVRkVzQJSGlFKUaBVL0WgWR0CS6HKb8WKudX2UKGgGaAloD0MIfLd542T4cECUhpRSlGgVS8doFkdAkujNGmUGFHV9lChoBmgJaA9DCHeiJCRSYXJAlIaUUpRoFUvHaBZHQJLpKEi+tbN1fZQoaAZoCWgPQwjr4GBvot5yQJSGlFKUaBVLrWgWR0CS6mQDV6NVdX2UKGgGaAloD0MICAJk6FjBcUCUhpRSlGgVS7poFkdAkuq7uDzy0HV9lChoBmgJaA9DCCFZwARuj0xAlIaUUpRoFUthaBZHQJLq56Vt4zJ1fZQoaAZoCWgPQwgvaYzWkUNwQJSGlFKUaBVLtGgWR0CS6zn8KohqdX2UKGgGaAloD0MIMsueBDZbN0CUhpRSlGgVS4loFkdAkut4Nd7fHnV9lChoBmgJaA9DCChFK/eCinBAlIaUUpRoFUuyaBZHQJLryqvNeMR1fZQoaAZoCWgPQwjmBdhHZ0ZxQJSGlFKUaBVLuWgWR0CS7QKZ2IO6dX2UKGgGaAloD0MIZHYWvZPjcECUhpRSlGgVS8JoFkdAku1bypaRp3V9lChoBmgJaA9DCCCYo8evt3FAlIaUUpRoFU0YAWgWR0CS7fvNeMQ3dX2UKGgGaAloD0MIUYTU7ewoYUCUhpRSlGgVTegDaBZHQJLxgtNBWxR1fZQoaAZoCWgPQwhfRrHc0phNQJSGlFKUaBVLsWgWR0CS8dIZqEeydX2UKGgGaAloD0MI/RAbLNyHc0CUhpRSlGgVS/doFkdAkvJE7Sy+pXV9lChoBmgJaA9DCKwcWmQ7MnJAlIaUUpRoFUvMaBZHQJLzh/DtPYZ1fZQoaAZoCWgPQwi1M0xtKVxxQJSGlFKUaBVNEgFoFkdAkvQZgb6xgXV9lChoBmgJaA9DCPbOaKsSvG9AlIaUUpRoFUu3aBZHQJL0bBHkLhJ1fZQoaAZoCWgPQwgPY9LfS9tTQJSGlFKUaBVLr2gWR0CS9LzkZJkHdX2UKGgGaAloD0MIhSLdzym1bkCUhpRSlGgVS8poFkdAkvUbA+IM0HVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 5956,
79
+ "n_steps": 1024,
80
+ "gamma": 0.997,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.02,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 32,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVJQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMeS9ob21lL2RpZmZyYWN0L0Rlc2t0b3AvaHVnZ2luZ2ZhY2UtZGVlcHJsLWNlcnRpZmljYXRlLy52ZW52L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHkvaG9tZS9kaWZmcmFjdC9EZXNrdG9wL2h1Z2dpbmdmYWNlLWRlZXBybC1jZXJ0aWZpY2F0ZS8udmVudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2-rerun/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4132f8033c3892e217cbf63de1563d760253ff833c4c18dacac3b213d8c096ef
3
+ size 87929
ppo-LunarLander-v2-rerun/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8588b24f48991aa0d033537944bce396398561c9687d7a632de5fca88c69e7ed
3
+ size 43201
ppo-LunarLander-v2-rerun/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2-rerun/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.15.0-56-generic-x86_64-with-glibc2.35 #62-Ubuntu SMP Tue Nov 22 19:54:14 UTC 2022
2
+ Python: 3.9.13
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.1+cu117
5
+ GPU Enabled: True
6
+ Numpy: 1.24.1
7
+ Gym: 0.21.0
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 286.7284840345872, "std_reward": 18.537119724969376, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-08T18:27:45.981505"}