diffrxction commited on
Commit
12175ce
·
1 Parent(s): a286bc7

Re-upload PPO LunarLander-v2 trained agent for deeprl-course

Browse files
README.md CHANGED
@@ -1,3 +1,37 @@
1
  ---
2
- {}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 254.52 +/- 21.53
20
+ name: mean_reward
21
+ verified: false
22
  ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fed0b788ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fed0b788d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fed0b788dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fed0b788e50>", "_build": "<function ActorCriticPolicy._build at 0x7fed0b788ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7fed0b788f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fed0b78e040>", "_predict": "<function ActorCriticPolicy._predict at 0x7fed0b78e0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fed0b78e160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fed0b78e1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fed0b78e280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fed0bc99480>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1024000, "_total_timesteps": 1024000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673173508041512173, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVJQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMeS9ob21lL2RpZmZyYWN0L0Rlc2t0b3AvaHVnZ2luZ2ZhY2UtZGVlcHJsLWNlcnRpZmljYXRlLy52ZW52L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHkvaG9tZS9kaWZmcmFjdC9EZXNrdG9wL2h1Z2dpbmdmYWNlLWRlZXBybC1jZXJ0aWZpY2F0ZS8udmVudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAEatBL7XHB27RVuyOatduzZDzC0867XeuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUkSGVTxiY0CUhpRSlIwBbJRN6AOMAXSUR0CML0fOlfqpdX2UKGgGaAloD0MIQWSRJt4BR0CUhpRSlGgVS7NoFkdAjC/0LDye7XV9lChoBmgJaA9DCOnX1k//0GNAlIaUUpRoFU3oA2gWR0CMNwXuVopQdX2UKGgGaAloD0MIY0M3+wOsXkCUhpRSlGgVTegDaBZHQIw90urZJ051fZQoaAZoCWgPQwiK6UKs/tdjQJSGlFKUaBVN6ANoFkdAjEZevpyIYXV9lChoBmgJaA9DCPp/1ZEjEmBAlIaUUpRoFU3oA2gWR0CMTi7PppvhdX2UKGgGaAloD0MIx4MtdvsxaECUhpRSlGgVTegDaBZHQIxWAVwgkkd1fZQoaAZoCWgPQwgXgEbp0jM0QJSGlFKUaBVLrmgWR0CMVq4lQdjodX2UKGgGaAloD0MIVBwHXi2kX0CUhpRSlGgVTegDaBZHQIxe45DJEIB1fZQoaAZoCWgPQwjEIRtIFwxkQJSGlFKUaBVN6ANoFkdAjGZUeEIw/XV9lChoBmgJaA9DCI1feCXJ2U1AlIaUUpRoFUuXaBZHQIxm6RwIdEN1fZQoaAZoCWgPQwjaqiSyjzJhQJSGlFKUaBVN6ANoFkdAjG4bHZK3/nV9lChoBmgJaA9DCI5cN6U8D2NAlIaUUpRoFU3oA2gWR0CMdjdHDrJKdX2UKGgGaAloD0MIuw1qvzV7ZECUhpRSlGgVTegDaBZHQIx9Z+H8CPp1fZQoaAZoCWgPQwhYxRuZx3pjQJSGlFKUaBVN6ANoFkdAjISCLdepoHV9lChoBmgJaA9DCP2GiQYpBmFAlIaUUpRoFU3oA2gWR0CMjQTKT0QLdX2UKGgGaAloD0MIJGHfTqJzZUCUhpRSlGgVTegDaBZHQIyUiol2Ned1fZQoaAZoCWgPQwiK5gEscr9lQJSGlFKUaBVN6ANoFkdAjJvsxwhnrnV9lChoBmgJaA9DCHk+A+rNEmZAlIaUUpRoFU3oA2gWR0CMpG14xDb8dX2UKGgGaAloD0MItf0rK03eQkCUhpRSlGgVS5poFkdAjKUDZtelbnV9lChoBmgJaA9DCGA/xAYLOl5AlIaUUpRoFU3oA2gWR0CMraxFAmiQdX2UKGgGaAloD0MIiljEsEPWYkCUhpRSlGgVTegDaBZHQIy1YlhPTG51fZQoaAZoCWgPQwj12JYB5wJhQJSGlFKUaBVN6ANoFkdAjL3GsV+I/XV9lChoBmgJaA9DCBhgH526LENAlIaUUpRoFUumaBZHQIzARHoX9BN1fZQoaAZoCWgPQwg1ejVA6W5jQJSGlFKUaBVN6ANoFkdAjMcDBMzuW3V9lChoBmgJaA9DCOzBpPj49kRAlIaUUpRoFUubaBZHQIzJcSbpeNV1fZQoaAZoCWgPQwgdHy3OGGdeQJSGlFKUaBVN6ANoFkdAjNFRZU1hs3V9lChoBmgJaA9DCDNuaqB5WGRAlIaUUpRoFU3oA2gWR0CM2RoZAIIGdX2UKGgGaAloD0MI8+SaAplNKUCUhpRSlGgVS7NoFkdAjNnUNBnjAHV9lChoBmgJaA9DCDHQtS+g8z9AlIaUUpRoFUuRaBZHQIzaX0h/y5J1fZQoaAZoCWgPQwhsW5TZIJJiQJSGlFKUaBVN6ANoFkdAjOJvHLida3V9lChoBmgJaA9DCMGsUKT7R0BAlIaUUpRoFUudaBZHQIzjB8QZn+R1fZQoaAZoCWgPQwgqOLwgoilnQJSGlFKUaBVN6ANoFkdAjOnO2y9mH3V9lChoBmgJaA9DCA1tADaguHBAlIaUUpRoFU0DAmgWR0CM7jHPu5SWdX2UKGgGaAloD0MITtAmh092a0CUhpRSlGgVTRUBaBZHQIzvcUVSGah1fZQoaAZoCWgPQwjS4/c2/ZVIQJSGlFKUaBVLqWgWR0CM8BC+lCTmdX2UKGgGaAloD0MIQYNNnUfhX0CUhpRSlGgVTegDaBZHQIz3bkZJkG11fZQoaAZoCWgPQwj8qlyo/KNjQJSGlFKUaBVN6ANoFkdAjP5n7gsK9nV9lChoBmgJaA9DCL9GkiBcs0JAlIaUUpRoFUu+aBZHQIz/Hu5SWJJ1fZQoaAZoCWgPQwiVumQco/5jQJSGlFKUaBVN6ANoFkdAjQZUxubZvnV9lChoBmgJaA9DCAlU/yCS4SBAlIaUUpRoFUukaBZHQI0G+f7Jnxt1fZQoaAZoCWgPQwi9jc2OVPBhQJSGlFKUaBVN6ANoFkdAjQ9Jbt7a7HV9lChoBmgJaA9DCFK2SNqNUmZAlIaUUpRoFU3oA2gWR0CNFoJemelLdX2UKGgGaAloD0MIqS7gZQYwY0CUhpRSlGgVTegDaBZHQI0gja/RE4N1fZQoaAZoCWgPQwj4wmSqYPxdQJSGlFKUaBVN6ANoFkdAjSh4YixFAnV9lChoBmgJaA9DCGu28pJ/42RAlIaUUpRoFU3oA2gWR0CNMDZDiOvMdX2UKGgGaAloD0MIHzF6biFvYECUhpRSlGgVTegDaBZHQI03z8BMi8p1fZQoaAZoCWgPQwjh1AeS9yBoQJSGlFKUaBVN6ANoFkdAjT6yDh99dHV9lChoBmgJaA9DCPFo44i1Dk9AlIaUUpRoFUuvaBZHQI0/VsLv1Dl1fZQoaAZoCWgPQwi3fY/6a1pkQJSGlFKUaBVN6ANoFkdAjUb/O+qR2nV9lChoBmgJaA9DCL1TAfc8dUpAlIaUUpRoFUuPaBZHQI1HjAckt291fZQoaAZoCWgPQwj9T/7uHeRiQJSGlFKUaBVN6ANoFkdAjU9MYEW69XV9lChoBmgJaA9DCAys4/gh8mNAlIaUUpRoFU3oA2gWR0CNVjNQCSzPdX2UKGgGaAloD0MIzsR0IdblZkCUhpRSlGgVTegDaBZHQI1dBD/lyR11fZQoaAZoCWgPQwgNpfYiWqJkQJSGlFKUaBVN6ANoFkdAjWV3w9aEBnV9lChoBmgJaA9DCBufyf55rmJAlIaUUpRoFU3oA2gWR0CNbPkU9IPLdX2UKGgGaAloD0MI4LpiRnhPYUCUhpRSlGgVTegDaBZHQI10zMmnfl91fZQoaAZoCWgPQwjGwDqOH9BjQJSGlFKUaBVN6ANoFkdAjXwz2exwAHV9lChoBmgJaA9DCM/cQ8J3F2BAlIaUUpRoFU3oA2gWR0CNhAlANXo1dX2UKGgGaAloD0MIda+T+jJMZUCUhpRSlGgVTegDaBZHQI2LfYxtYSx1fZQoaAZoCWgPQwiMhLacSy1kQJSGlFKUaBVN6ANoFkdAjZKUAtFrmHV9lChoBmgJaA9DCCeIug/AZ2VAlIaUUpRoFU3oA2gWR0CNmtQTmGM5dX2UKGgGaAloD0MIqIqp9BPHY0CUhpRSlGgVTegDaBZHQI2ik+Pikwh1fZQoaAZoCWgPQwgCvAUSFHxnQJSGlFKUaBVN6ANoFkdAjamvwmVqvnV9lChoBmgJaA9DCO8gdqbQoFxAlIaUUpRoFU3oA2gWR0CNsn77bcoIdX2UKGgGaAloD0MI3JvfMFGrZUCUhpRSlGgVTegDaBZHQI25tFx4ptt1fZQoaAZoCWgPQwjPukbLgXFmQJSGlFKUaBVN6ANoFkdAjcDJg9eQdXV9lChoBmgJaA9DCGNH41C/KGBAlIaUUpRoFU3oA2gWR0CNyMFotcv/dX2UKGgGaAloD0MI98ySADW3XkCUhpRSlGgVTegDaBZHQI3Qop6QeV91fZQoaAZoCWgPQwg2donqrSEpwJSGlFKUaBVLtmgWR0CN0VcRlHz6dX2UKGgGaAloD0MIklm9w+1wNUCUhpRSlGgVS5loFkdAjdHoXj2i+XV9lChoBmgJaA9DCDV/TGvT615AlIaUUpRoFU3oA2gWR0CN2Uq//NqydX2UKGgGaAloD0MIxCXHndK2Y0CUhpRSlGgVTegDaBZHQI3g1bRnezl1fZQoaAZoCWgPQwhvEoPAStFnQJSGlFKUaBVN6ANoFkdAjeiVD8cdYHV9lChoBmgJaA9DCE88ZwsIxl5AlIaUUpRoFU3oA2gWR0CN8RTAFgUldX2UKGgGaAloD0MIGNALdy5sbUCUhpRSlGgVTSIBaBZHQI3yWk+HJtB1fZQoaAZoCWgPQwjKN9vcmL9rQJSGlFKUaBVNlANoFkdAjfnAi3XqaHV9lChoBmgJaA9DCHFYGvjRLGBAlIaUUpRoFU3oA2gWR0COAnm0VrRCdX2UKGgGaAloD0MIICV2be+iYkCUhpRSlGgVTegDaBZHQI4KkfxMFll1fZQoaAZoCWgPQwh8urpjMYtoQJSGlFKUaBVN6ANoFkdAjhHbWuoxYnV9lChoBmgJaA9DCGQfZFkwpFpAlIaUUpRoFU3oA2gWR0COGZKPGQ0XdX2UKGgGaAloD0MIrIxGPi/bbkCUhpRSlGgVTbkBaBZHQI4dtTaTOgR1fZQoaAZoCWgPQwhAFMyYgoUSwJSGlFKUaBVLu2gWR0COHnZcs189dX2UKGgGaAloD0MIYVJ8fEJSV0CUhpRSlGgVTegDaBZHQI4npL5AQg91fZQoaAZoCWgPQwgyj/zBwMpkQJSGlFKUaBVN6ANoFkdAji737tReknV9lChoBmgJaA9DCM/b2OxIQWNAlIaUUpRoFU3oA2gWR0CONk+mm+CcdX2UKGgGaAloD0MIroIY6NoWYkCUhpRSlGgVTegDaBZHQI49ksUZeiV1fZQoaAZoCWgPQwj+17lpM6dRQJSGlFKUaBVLh2gWR0COPhabF0gbdX2UKGgGaAloD0MImnlyTYF6XkCUhpRSlGgVTegDaBZHQI5G2ktVaOh1fZQoaAZoCWgPQwgy5q4lZHxvQJSGlFKUaBVNywFoFkdAjkkXlS0jT3V9lChoBmgJaA9DCEAWokNgf2RAlIaUUpRoFU3oA2gWR0COUMlD4QBgdX2UKGgGaAloD0MID/CkhcuTYkCUhpRSlGgVTegDaBZHQI5YtTJhfBx1fZQoaAZoCWgPQwgOSphp+8NkQJSGlFKUaBVN6ANoFkdAjl/t0eU6gnV9lChoBmgJaA9DCNleC3pvFkdAlIaUUpRoFUuWaBZHQI5gfAdn0051fZQoaAZoCWgPQwiDFadaC9M9QJSGlFKUaBVLiWgWR0COYuJrLyMDdX2UKGgGaAloD0MIHyv4bQjta0CUhpRSlGgVS/BoFkdAjmPg3DNyHXV9lChoBmgJaA9DCM+j4v8OT2ZAlIaUUpRoFU3oA2gWR0COa9kT6BRRdX2UKGgGaAloD0MI+Um1T0fKaECUhpRSlGgVTegDaBZHQI5zYQ+UyHp1fZQoaAZoCWgPQwgvo1hu6bNlQJSGlFKUaBVN6ANoFkdAjnuCvxH5J3V9lChoBmgJaA9DCIKN69/1d2hAlIaUUpRoFU3oA2gWR0COgmvZh8YydWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4000, "n_steps": 1024, "gamma": 0.997, "gae_lambda": 0.98, "ent_coef": 0.02, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVJQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMeS9ob21lL2RpZmZyYWN0L0Rlc2t0b3AvaHVnZ2luZ2ZhY2UtZGVlcHJsLWNlcnRpZmljYXRlLy52ZW52L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHkvaG9tZS9kaWZmcmFjdC9EZXNrdG9wL2h1Z2dpbmdmYWNlLWRlZXBybC1jZXJ0aWZpY2F0ZS8udmVudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-56-generic-x86_64-with-glibc2.35 #62-Ubuntu SMP Tue Nov 22 19:54:14 UTC 2022", "Python": "3.9.13", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.1", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:737139aeb50b080c6803642170dfb0a65eb1e061dcf1d4ec137b244ae5502c7d
3
- size 146789
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93d792a21282be0f8c36b0803770a9b33b9fdeac057a9189b938ae58cc33b9b8
3
+ size 146933
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fed0b788ca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fed0b788d30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fed0b788dc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fed0b788e50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fed0b788ee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fed0b788f70>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fed0b78e040>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fed0b78e0d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fed0b78e160>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fed0b78e1f0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fed0b78e280>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc._abc_data object at 0x7fed0bc99480>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 1,
45
+ "num_timesteps": 1024000,
46
+ "_total_timesteps": 1024000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673173508041512173,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVJQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMeS9ob21lL2RpZmZyYWN0L0Rlc2t0b3AvaHVnZ2luZ2ZhY2UtZGVlcHJsLWNlcnRpZmljYXRlLy52ZW52L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHkvaG9tZS9kaWZmcmFjdC9EZXNrdG9wL2h1Z2dpbmdmYWNlLWRlZXBybC1jZXJ0aWZpY2F0ZS8udmVudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAEatBL7XHB27RVuyOatduzZDzC0867XeuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": 0.0,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVbBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUkSGVTxiY0CUhpRSlIwBbJRN6AOMAXSUR0CML0fOlfqpdX2UKGgGaAloD0MIQWSRJt4BR0CUhpRSlGgVS7NoFkdAjC/0LDye7XV9lChoBmgJaA9DCOnX1k//0GNAlIaUUpRoFU3oA2gWR0CMNwXuVopQdX2UKGgGaAloD0MIY0M3+wOsXkCUhpRSlGgVTegDaBZHQIw90urZJ051fZQoaAZoCWgPQwiK6UKs/tdjQJSGlFKUaBVN6ANoFkdAjEZevpyIYXV9lChoBmgJaA9DCPp/1ZEjEmBAlIaUUpRoFU3oA2gWR0CMTi7PppvhdX2UKGgGaAloD0MIx4MtdvsxaECUhpRSlGgVTegDaBZHQIxWAVwgkkd1fZQoaAZoCWgPQwgXgEbp0jM0QJSGlFKUaBVLrmgWR0CMVq4lQdjodX2UKGgGaAloD0MIVBwHXi2kX0CUhpRSlGgVTegDaBZHQIxe45DJEIB1fZQoaAZoCWgPQwjEIRtIFwxkQJSGlFKUaBVN6ANoFkdAjGZUeEIw/XV9lChoBmgJaA9DCI1feCXJ2U1AlIaUUpRoFUuXaBZHQIxm6RwIdEN1fZQoaAZoCWgPQwjaqiSyjzJhQJSGlFKUaBVN6ANoFkdAjG4bHZK3/nV9lChoBmgJaA9DCI5cN6U8D2NAlIaUUpRoFU3oA2gWR0CMdjdHDrJKdX2UKGgGaAloD0MIuw1qvzV7ZECUhpRSlGgVTegDaBZHQIx9Z+H8CPp1fZQoaAZoCWgPQwhYxRuZx3pjQJSGlFKUaBVN6ANoFkdAjISCLdepoHV9lChoBmgJaA9DCP2GiQYpBmFAlIaUUpRoFU3oA2gWR0CMjQTKT0QLdX2UKGgGaAloD0MIJGHfTqJzZUCUhpRSlGgVTegDaBZHQIyUiol2Ned1fZQoaAZoCWgPQwiK5gEscr9lQJSGlFKUaBVN6ANoFkdAjJvsxwhnrnV9lChoBmgJaA9DCHk+A+rNEmZAlIaUUpRoFU3oA2gWR0CMpG14xDb8dX2UKGgGaAloD0MItf0rK03eQkCUhpRSlGgVS5poFkdAjKUDZtelbnV9lChoBmgJaA9DCGA/xAYLOl5AlIaUUpRoFU3oA2gWR0CMraxFAmiQdX2UKGgGaAloD0MIiljEsEPWYkCUhpRSlGgVTegDaBZHQIy1YlhPTG51fZQoaAZoCWgPQwj12JYB5wJhQJSGlFKUaBVN6ANoFkdAjL3GsV+I/XV9lChoBmgJaA9DCBhgH526LENAlIaUUpRoFUumaBZHQIzARHoX9BN1fZQoaAZoCWgPQwg1ejVA6W5jQJSGlFKUaBVN6ANoFkdAjMcDBMzuW3V9lChoBmgJaA9DCOzBpPj49kRAlIaUUpRoFUubaBZHQIzJcSbpeNV1fZQoaAZoCWgPQwgdHy3OGGdeQJSGlFKUaBVN6ANoFkdAjNFRZU1hs3V9lChoBmgJaA9DCDNuaqB5WGRAlIaUUpRoFU3oA2gWR0CM2RoZAIIGdX2UKGgGaAloD0MI8+SaAplNKUCUhpRSlGgVS7NoFkdAjNnUNBnjAHV9lChoBmgJaA9DCDHQtS+g8z9AlIaUUpRoFUuRaBZHQIzaX0h/y5J1fZQoaAZoCWgPQwhsW5TZIJJiQJSGlFKUaBVN6ANoFkdAjOJvHLida3V9lChoBmgJaA9DCMGsUKT7R0BAlIaUUpRoFUudaBZHQIzjB8QZn+R1fZQoaAZoCWgPQwgqOLwgoilnQJSGlFKUaBVN6ANoFkdAjOnO2y9mH3V9lChoBmgJaA9DCA1tADaguHBAlIaUUpRoFU0DAmgWR0CM7jHPu5SWdX2UKGgGaAloD0MITtAmh092a0CUhpRSlGgVTRUBaBZHQIzvcUVSGah1fZQoaAZoCWgPQwjS4/c2/ZVIQJSGlFKUaBVLqWgWR0CM8BC+lCTmdX2UKGgGaAloD0MIQYNNnUfhX0CUhpRSlGgVTegDaBZHQIz3bkZJkG11fZQoaAZoCWgPQwj8qlyo/KNjQJSGlFKUaBVN6ANoFkdAjP5n7gsK9nV9lChoBmgJaA9DCL9GkiBcs0JAlIaUUpRoFUu+aBZHQIz/Hu5SWJJ1fZQoaAZoCWgPQwiVumQco/5jQJSGlFKUaBVN6ANoFkdAjQZUxubZvnV9lChoBmgJaA9DCAlU/yCS4SBAlIaUUpRoFUukaBZHQI0G+f7Jnxt1fZQoaAZoCWgPQwi9jc2OVPBhQJSGlFKUaBVN6ANoFkdAjQ9Jbt7a7HV9lChoBmgJaA9DCFK2SNqNUmZAlIaUUpRoFU3oA2gWR0CNFoJemelLdX2UKGgGaAloD0MIqS7gZQYwY0CUhpRSlGgVTegDaBZHQI0gja/RE4N1fZQoaAZoCWgPQwj4wmSqYPxdQJSGlFKUaBVN6ANoFkdAjSh4YixFAnV9lChoBmgJaA9DCGu28pJ/42RAlIaUUpRoFU3oA2gWR0CNMDZDiOvMdX2UKGgGaAloD0MIHzF6biFvYECUhpRSlGgVTegDaBZHQI03z8BMi8p1fZQoaAZoCWgPQwjh1AeS9yBoQJSGlFKUaBVN6ANoFkdAjT6yDh99dHV9lChoBmgJaA9DCPFo44i1Dk9AlIaUUpRoFUuvaBZHQI0/VsLv1Dl1fZQoaAZoCWgPQwi3fY/6a1pkQJSGlFKUaBVN6ANoFkdAjUb/O+qR2nV9lChoBmgJaA9DCL1TAfc8dUpAlIaUUpRoFUuPaBZHQI1HjAckt291fZQoaAZoCWgPQwj9T/7uHeRiQJSGlFKUaBVN6ANoFkdAjU9MYEW69XV9lChoBmgJaA9DCAys4/gh8mNAlIaUUpRoFU3oA2gWR0CNVjNQCSzPdX2UKGgGaAloD0MIzsR0IdblZkCUhpRSlGgVTegDaBZHQI1dBD/lyR11fZQoaAZoCWgPQwgNpfYiWqJkQJSGlFKUaBVN6ANoFkdAjWV3w9aEBnV9lChoBmgJaA9DCBufyf55rmJAlIaUUpRoFU3oA2gWR0CNbPkU9IPLdX2UKGgGaAloD0MI4LpiRnhPYUCUhpRSlGgVTegDaBZHQI10zMmnfl91fZQoaAZoCWgPQwjGwDqOH9BjQJSGlFKUaBVN6ANoFkdAjXwz2exwAHV9lChoBmgJaA9DCM/cQ8J3F2BAlIaUUpRoFU3oA2gWR0CNhAlANXo1dX2UKGgGaAloD0MIda+T+jJMZUCUhpRSlGgVTegDaBZHQI2LfYxtYSx1fZQoaAZoCWgPQwiMhLacSy1kQJSGlFKUaBVN6ANoFkdAjZKUAtFrmHV9lChoBmgJaA9DCCeIug/AZ2VAlIaUUpRoFU3oA2gWR0CNmtQTmGM5dX2UKGgGaAloD0MIqIqp9BPHY0CUhpRSlGgVTegDaBZHQI2ik+Pikwh1fZQoaAZoCWgPQwgCvAUSFHxnQJSGlFKUaBVN6ANoFkdAjamvwmVqvnV9lChoBmgJaA9DCO8gdqbQoFxAlIaUUpRoFU3oA2gWR0CNsn77bcoIdX2UKGgGaAloD0MI3JvfMFGrZUCUhpRSlGgVTegDaBZHQI25tFx4ptt1fZQoaAZoCWgPQwjPukbLgXFmQJSGlFKUaBVN6ANoFkdAjcDJg9eQdXV9lChoBmgJaA9DCGNH41C/KGBAlIaUUpRoFU3oA2gWR0CNyMFotcv/dX2UKGgGaAloD0MI98ySADW3XkCUhpRSlGgVTegDaBZHQI3Qop6QeV91fZQoaAZoCWgPQwg2donqrSEpwJSGlFKUaBVLtmgWR0CN0VcRlHz6dX2UKGgGaAloD0MIklm9w+1wNUCUhpRSlGgVS5loFkdAjdHoXj2i+XV9lChoBmgJaA9DCDV/TGvT615AlIaUUpRoFU3oA2gWR0CN2Uq//NqydX2UKGgGaAloD0MIxCXHndK2Y0CUhpRSlGgVTegDaBZHQI3g1bRnezl1fZQoaAZoCWgPQwhvEoPAStFnQJSGlFKUaBVN6ANoFkdAjeiVD8cdYHV9lChoBmgJaA9DCE88ZwsIxl5AlIaUUpRoFU3oA2gWR0CN8RTAFgUldX2UKGgGaAloD0MIGNALdy5sbUCUhpRSlGgVTSIBaBZHQI3yWk+HJtB1fZQoaAZoCWgPQwjKN9vcmL9rQJSGlFKUaBVNlANoFkdAjfnAi3XqaHV9lChoBmgJaA9DCHFYGvjRLGBAlIaUUpRoFU3oA2gWR0COAnm0VrRCdX2UKGgGaAloD0MIICV2be+iYkCUhpRSlGgVTegDaBZHQI4KkfxMFll1fZQoaAZoCWgPQwh8urpjMYtoQJSGlFKUaBVN6ANoFkdAjhHbWuoxYnV9lChoBmgJaA9DCGQfZFkwpFpAlIaUUpRoFU3oA2gWR0COGZKPGQ0XdX2UKGgGaAloD0MIrIxGPi/bbkCUhpRSlGgVTbkBaBZHQI4dtTaTOgR1fZQoaAZoCWgPQwhAFMyYgoUSwJSGlFKUaBVLu2gWR0COHnZcs189dX2UKGgGaAloD0MIYVJ8fEJSV0CUhpRSlGgVTegDaBZHQI4npL5AQg91fZQoaAZoCWgPQwgyj/zBwMpkQJSGlFKUaBVN6ANoFkdAji737tReknV9lChoBmgJaA9DCM/b2OxIQWNAlIaUUpRoFU3oA2gWR0CONk+mm+CcdX2UKGgGaAloD0MIroIY6NoWYkCUhpRSlGgVTegDaBZHQI49ksUZeiV1fZQoaAZoCWgPQwj+17lpM6dRQJSGlFKUaBVLh2gWR0COPhabF0gbdX2UKGgGaAloD0MImnlyTYF6XkCUhpRSlGgVTegDaBZHQI5G2ktVaOh1fZQoaAZoCWgPQwgy5q4lZHxvQJSGlFKUaBVNywFoFkdAjkkXlS0jT3V9lChoBmgJaA9DCEAWokNgf2RAlIaUUpRoFU3oA2gWR0COUMlD4QBgdX2UKGgGaAloD0MID/CkhcuTYkCUhpRSlGgVTegDaBZHQI5YtTJhfBx1fZQoaAZoCWgPQwgOSphp+8NkQJSGlFKUaBVN6ANoFkdAjl/t0eU6gnV9lChoBmgJaA9DCNleC3pvFkdAlIaUUpRoFUuWaBZHQI5gfAdn0051fZQoaAZoCWgPQwiDFadaC9M9QJSGlFKUaBVLiWgWR0COYuJrLyMDdX2UKGgGaAloD0MIHyv4bQjta0CUhpRSlGgVS/BoFkdAjmPg3DNyHXV9lChoBmgJaA9DCM+j4v8OT2ZAlIaUUpRoFU3oA2gWR0COa9kT6BRRdX2UKGgGaAloD0MI+Um1T0fKaECUhpRSlGgVTegDaBZHQI5zYQ+UyHp1fZQoaAZoCWgPQwgvo1hu6bNlQJSGlFKUaBVN6ANoFkdAjnuCvxH5J3V9lChoBmgJaA9DCIKN69/1d2hAlIaUUpRoFU3oA2gWR0COgmvZh8YydWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 4000,
79
+ "n_steps": 1024,
80
+ "gamma": 0.997,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.02,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 32,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVJQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMeS9ob21lL2RpZmZyYWN0L0Rlc2t0b3AvaHVnZ2luZ2ZhY2UtZGVlcHJsLWNlcnRpZmljYXRlLy52ZW52L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHkvaG9tZS9kaWZmcmFjdC9EZXNrdG9wL2h1Z2dpbmdmYWNlLWRlZXBybC1jZXJ0aWZpY2F0ZS8udmVudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07ccb1109a7359a6f007624e847e7da846ca668f1af39267123c48e17bfdd5a2
3
+ size 88057
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47ac99aad9a8a268f4ecba11bab741fda4c9f1a813652fb78b2a656e917b1969
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.15.0-56-generic-x86_64-with-glibc2.35 #62-Ubuntu SMP Tue Nov 22 19:54:14 UTC 2022
2
+ Python: 3.9.13
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.1+cu117
5
+ GPU Enabled: True
6
+ Numpy: 1.24.1
7
+ Gym: 0.21.0
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 254.52459749394438, "std_reward": 21.529070907727355, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-08T17:48:43.771134"}