--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - controlnet inference: false --- # SDXL-controlnet: Canny These are controlnet weights trained on stabilityai/stable-diffusion-xl-base-1.0 with canny conditioning. You can find some example images in the following. prompt: a couple watching a romantic sunset, 4k photo ![images_0)](./out_couple.png) prompt: ultrarealistic shot of a furry blue bird ![images_1)](./out_bird.png) prompt: a woman, close up, detailed, beautiful, street photography, photorealistic, detailed, Kodak ektar 100, natural, candid shot ![images_2)](./out_women.png) prompt: Cinematic, neoclassical table in the living room, cinematic, contour, lighting, highly detailed, winter, golden hour ![images_3)](./out_room.png) prompt: a tornado hitting grass field, 1980's film grain. overcast, muted colors. ![images_0)](./out_tornado.png) ## Usage Make sure to first install the libraries: ```bash pip install accelerate transformers safetensors opencv-python diffusers ``` And then we're ready to go: ```python from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL from diffusers.utils import load_image from PIL import Image import torch import numpy as np import cv2 prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting" negative_prompt = 'low quality, bad quality, sketches' image = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png") controlnet_conditioning_scale = 0.5 # recommended for good generalization controlnet = ControlNetModel.from_pretrained( "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16 ) vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) pipe = StableDiffusionXLControlNetPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch.float16, ) pipe.enable_model_cpu_offload() image = np.array(image) image = cv2.Canny(image, 100, 200) image = image[:, :, None] image = np.concatenate([image, image, image], axis=2) image = Image.fromarray(image) images = pipe( prompt, negative_prompt=negative_prompt, image=image, controlnet_conditioning_scale=controlnet_conditioning_scale, ).images images[0].save(f"hug_lab.png") ``` ![images_10)](./out_hug_lab_7.png) To more details, check out the official documentation of [`StableDiffusionXLControlNetPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/controlnet_sdxl). ### Training Our training script was built on top of the official training script that we provide [here](https://github.com/huggingface/diffusers/blob/main/examples/controlnet/README_sdxl.md). #### Training data This checkpoint was first trained for 20,000 steps on laion 6a resized to a max minimum dimension of 384. It was then further trained for 20,000 steps on laion 6a resized to a max minimum dimension of 1024 and then filtered to contain only minimum 1024 images. We found the further high resolution finetuning was necessary for image quality. #### Compute one 8xA100 machine #### Batch size Data parallel with a single gpu batch size of 8 for a total batch size of 64. #### Hyper Parameters Constant learning rate of 1e-4 scaled by batch size for total learning rate of 64e-4 #### Mixed precision fp16