File size: 1,307 Bytes
69f6fc2 78ed83d 866074c 78ed83d 2f0087d 78ed83d 69f6fc2 b6badad 69f6fc2 78ed83d 69f6fc2 78ed83d 2f0087d b6badad 78ed83d 866074c 69f6fc2 78ed83d d4bb530 78ed83d d4bb530 78ed83d b6badad 78ed83d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
#!/usr/bin/env python3
from diffusers import StableDiffusionPipeline, DPMSolverSinglestepScheduler, DPMSolverMultistepScheduler, DEISMultistepScheduler, HeunDiscreteScheduler
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
import time
import os
from huggingface_hub import HfApi
import torch
import sys
from pathlib import Path
path = sys.argv[1]
api = HfApi()
start_time = time.time()
#pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16, device_map="auto")
#pipe.scheduler = HeunDiscreteScheduler.from_config(pipe.scheduler.config)
pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")
prompt = "a highly realistic photo of green turtle"
generator = torch.Generator(device="cuda").manual_seed(0)
image = pipe(prompt, generator=generator, num_inference_steps=15).images[0]
print("Time", time.time() - start_time)
path = os.path.join(Path.home(), "images", "aa.png")
image.save(path)
api.upload_file(
path_or_fileobj=path,
path_in_repo=path.split("/")[-1],
repo_id="patrickvonplaten/images",
repo_type="dataset",
)
print("https://huggingface.co/datasets/patrickvonplaten/images/blob/main/aa.png")
|