File size: 2,440 Bytes
e990e13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
#!/usr/bin/env python3
from diffusers import StableDiffusionPipeline, KDPM2DiscreteScheduler, StableDiffusionImg2ImgPipeline, HeunDiscreteScheduler, KDPM2AncestralDiscreteScheduler, DDIMScheduler
import time
import os
from huggingface_hub import HfApi
# from compel import Compel
import torch
import sys
from pathlib import Path
import requests
from PIL import Image
from io import BytesIO
path = sys.argv[1]
api = HfApi()
start_time = time.time()
pipe = StableDiffusionPipeline.from_ckpt(path, torch_dtype=torch.float16)
import ipdb; ipdb.set_trace()
pipe = pipe.to("cuda")
prompt = "A lion in galaxies, spirals, nebulae, stars, smoke, iridescent, intricate detail, octane render, 8k"
# rompts = ["a cat playing with a ball++ in the forest", "a cat playing with a ball++ in the forest", "a cat playing with a ball-- in the forest"]
# prompt_embeds = torch.cat([compel.build_conditioning_tensor(prompt) for prompt in prompts])
# generator = [torch.Generator(device="cuda").manual_seed(0) for _ in range(prompt_embeds.shape[0])]
#
# url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
#
# response = requests.get(url)
# image = Image.open(BytesIO(response.content)).convert("RGB")
# image.thumbnail((768, 768))
#
for TIMESTEP_TYPE in ["trailing", "leading"]:
for RESCALE_BETAS_ZEROS_SNR in [True, False]:
for GUIDANCE_RESCALE in [0,0, 0.7]:
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, timestep_spacing=TIMESTEP_TYPE, rescale_betas_zero_snr=RESCALE_BETAS_ZEROS_SNR)
generator = torch.Generator(device="cpu").manual_seed(0)
images = pipe(prompt=prompt, generator=generator, num_images_per_prompt=4, num_inference_steps=40, guidance_rescale=GUIDANCE_RESCALE).images
for i, image in enumerate(images):
file_name = f"bb_{i}_{TIMESTEP_TYPE}_{str(int(RESCALE_BETAS_ZEROS_SNR))}_{GUIDANCE_RESCALE}"
path = os.path.join(Path.home(), "images", f"{file_name}.png")
image.save(path)
api.upload_file(
path_or_fileobj=path,
path_in_repo=path.split("/")[-1],
repo_id="patrickvonplaten/images",
repo_type="dataset",
)
print(f"https://huggingface.co/datasets/patrickvonplaten/images/blob/main/{file_name}.png")
|