patrickvonplaten commited on
Commit
58b66fd
1 Parent(s): 403db3e
Files changed (1) hide show
  1. plot_bench.py +47 -26
plot_bench.py CHANGED
@@ -1,36 +1,59 @@
1
  #!/usr/bin/env python3
2
  import matplotlib.pyplot as plt
3
  import numpy as np
 
4
 
5
- batch_size_4 = {
6
- "A100": [4.75, 3.26, 3.24, 3.10], # those values are made up
7
- "A10": [13.94, 9.81, 10.01, 9.35],
8
- "T4": [38.81, 30.09, 29.74, 27.55],
9
- "V100": [9.84, 8.16, 8.09, 7.65],
10
- "3090": [10.04, 7.82, 7.89, 7.47],
11
- "3090TI": [9.07, 7.14, 7.15, 6.81],
12
- }
13
 
14
- batch_size_16 = {
15
- "A100": [18.95, 13.57, 13.67, 12.25],
16
- "A10": [0, 37.55, 38.31, 36.81],
17
- "T4": [0, 111.47, 113.26, 106.93],
18
- "V100": [0, 30.29, 29.84, 28.22],
19
- "3090": [0, 29.06, 29.06, 28.2],
20
- "3090TI": [0, 26.1, 26.28, 25.46],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  }
22
 
23
- batch_sizes = batch_size_16
 
 
 
24
 
25
  methods = {
26
- "Vanilla Attention": [x[0] for x in batch_sizes.values()],
27
- "xFormers": [x[1] for x in batch_sizes.values()],
28
- "PyTorch2.0 SDPA": [x[2] for x in batch_sizes.values()],
29
- "SDPA + torch.compile": [x[3] for x in batch_sizes.values()],
30
  }
31
 
32
- x = np.arange(len(batch_size_4)) # the label locations
33
- width = 0.15 # the width of the bars
34
  multiplier = 0
35
 
36
  fig, ax = plt.subplots(constrained_layout=True)
@@ -38,14 +61,12 @@ fig, ax = plt.subplots(constrained_layout=True)
38
  for attribute, measurement in methods.items():
39
  offset = width * multiplier
40
  rects = ax.bar(x + offset, measurement, width, label=attribute)
41
- ax.bar_label(rects, padding=3)
42
  multiplier += 1
43
 
44
  # Add some text for labels, title and custom x-axis tick labels, etc.
45
  ax.set_ylabel('Time (s)')
46
- ax.set_title('Inference Speed at Batch Size=4')
47
- ax.set_xticks(x + width, batch_size_4)
48
  ax.legend(loc='upper left')
49
- ax.set_ylim(0, 250)
50
 
51
  plt.show()
 
1
  #!/usr/bin/env python3
2
  import matplotlib.pyplot as plt
3
  import numpy as np
4
+ import seaborn as sns
5
 
6
+ sns.set(font_scale=1.1)
 
 
 
 
 
 
 
7
 
8
+ batch_sizes = {
9
+ "fp16_4": {
10
+ "A100": [4.75, 3.26, 3.24, 3.10], # those values are made up
11
+ "A10": [13.94, 9.81, 10.01, 9.35],
12
+ "T4": [38.81, 30.09, 29.74, 27.55],
13
+ "V100": [9.84, 8.16, 8.09, 7.65],
14
+ "3090": [10.04, 7.82, 7.89, 7.47],
15
+ "3090TI": [9.07, 7.14, 7.15, 6.81],
16
+ },
17
+ "fp16_16": {
18
+ "A100": [18.95, 13.57, 13.67, 12.25],
19
+ "A10": [0, 37.55, 38.31, 36.81],
20
+ "T4": [0, 111.47, 113.26, 106.93],
21
+ "V100": [0, 30.29, 29.84, 28.22],
22
+ "3090": [0, 29.06, 29.06, 28.2],
23
+ "3090TI": [0, 26.1, 26.28, 25.46],
24
+ },
25
+ "fp32_4": {
26
+ "A100": [16.56, 12.42, 12.2, 11.84],
27
+ "A10": [34.77, 27.63, 22.77, 22.07],
28
+ "T4": [0, 85.72, 85.78, 84.48],
29
+ "V100": [0, 25.73, 25.31, 24.7],
30
+ "3090": [22.69, 21.45, 18.67, 18.09],
31
+ "3090TI": [20.32, 19.31, 16.9, 16.37],
32
+ },
33
+ "fp32_16": {
34
+ "A100": [0, 47.08, 46.27, 44.8],
35
+ "A10": [0, 116.49, 88.56, 86.64],
36
+ "T4": [0, 276.47, 280.26, 270.93], # numbers are made up
37
+ "V100": [0, 84.99, 84.73, 82.55],
38
+ "3090": [0, 85.35, 72.37, 70.25],
39
+ "3090TI": [0, 75.37, 65.25, 64.32],
40
+ },
41
  }
42
 
43
+ batch_size = 16
44
+ dtype = "fp32"
45
+
46
+ key = f"{dtype}_{batch_size}"
47
 
48
  methods = {
49
+ "Vanilla Attention": [x[0] for x in batch_sizes[key].values()],
50
+ "xFormers": [x[1] for x in batch_sizes[key].values()],
51
+ "PyTorch2.0 SDPA": [x[2] for x in batch_sizes[key].values()],
52
+ "SDPA + torch.compile": [x[3] for x in batch_sizes[key].values()],
53
  }
54
 
55
+ x = np.arange(len(batch_sizes[key])) # the label locations
56
+ width = 0.1 # the width of the bars
57
  multiplier = 0
58
 
59
  fig, ax = plt.subplots(constrained_layout=True)
 
61
  for attribute, measurement in methods.items():
62
  offset = width * multiplier
63
  rects = ax.bar(x + offset, measurement, width, label=attribute)
 
64
  multiplier += 1
65
 
66
  # Add some text for labels, title and custom x-axis tick labels, etc.
67
  ax.set_ylabel('Time (s)')
68
+ ax.set_title(f'Inference Speed at Batch Size={batch_size} for {dtype}')
69
+ ax.set_xticks(x + width, batch_sizes[key])
70
  ax.legend(loc='upper left')
 
71
 
72
  plt.show()